分析 (1)由四邊形四個(gè)點(diǎn)的坐標(biāo)易得OA=BC=5,BC∥OA,以O(shè)A為直徑作⊙D,與直線BC分別交于點(diǎn)E、F,根據(jù)圓周角定理得∠OEA=∠OFA=90°,如圖1,作DG⊥EF于G,連DE,則DE=OD=2.5,DG=2,根據(jù)垂徑定理得EG=GF,接著利用勾股定理可計(jì)算出EG=1.5,于是得到E(1,2),F(xiàn)(4,2),即點(diǎn)P在E點(diǎn)和F點(diǎn)時(shí),滿足條件,此時(shí),當(dāng)$\left\{\begin{array}{l}{m-5≤4}\\{m≥1}\end{array}\right.$,即1≤m≤9時(shí),邊BC上總存在這樣的點(diǎn)P,使∠OPA=90°;
(2)如圖2,先判斷四邊形OABC是平行四邊形,再利用平行線的性質(zhì)和角平分線定義可得到∠AQO=90°,以O(shè)A為直徑作⊙D,與直線BC分別交于點(diǎn)E、F,則∠OEA=∠OFA=90°,于是得到點(diǎn)Q只能是點(diǎn)E或點(diǎn)F,當(dāng)Q在F點(diǎn)時(shí),證明F是BC的中點(diǎn).而F點(diǎn)為 (4,2),得到m的值為6.5;當(dāng)Q在E點(diǎn)時(shí),同理可求得m的值為3.5.
解答 解:(1)存在.![]()
∵O(0,0)、A(5,0)、B(m,2)、C(m-5,2).
∴OA=BC=5,BC∥OA,
以O(shè)A為直徑作⊙D,與直線BC分別交于點(diǎn)E、F,則∠OEA=∠OFA=90°,如圖1,
作DG⊥EF于G,連DE,則DE=OD=2.5,DG=2,EG=GF,
∴EG=$\sqrt{D{E}^{2}-D{G}^{2}}$=1.5,
∴E(1,2),F(xiàn)(4,2),
∴當(dāng)$\left\{\begin{array}{l}{m-5≤4}\\{m≥1}\end{array}\right.$,即1≤m≤9時(shí),邊BC上總存在這樣的點(diǎn)P,使∠OPA=90°;
(2)如圖2,
∵BC=OA=5,BC∥OA,
∴四邊形OABC是平行四邊形,
∴OC∥AB,
∴∠AOC+∠OAB=180°,
∵OQ平分∠AOC,AQ平分∠OAB,
∴∠AOQ=$\frac{1}{2}$∠AOC,∠OAQ=$\frac{1}{2}$∠OAB,
∴∠AOQ+∠OAQ=90°,
∴∠AQO=90°,
以O(shè)A為直徑作⊙D,與直線BC分別交于點(diǎn)E、F,則∠OEA=∠OFA=90°,
∴點(diǎn)Q只能是點(diǎn)E或點(diǎn)F,
當(dāng)Q在F點(diǎn)時(shí),∵OF、AF分別是∠AOC與∠OAB的平分線,BC∥OA,
∴∠CFO=∠FOA=∠FOC,∠BFA=∠FAO=∠FAB,
∴CF=OC,BF=AB,
而OC=AB,
∴CF=BF,即F是BC的中點(diǎn).
而F點(diǎn)為(4,2),則$\frac{m+m-5}{2}$=4,解得m=6.5
∴此時(shí)m的值為6.5,
當(dāng)Q在E點(diǎn)時(shí),同理可得$\frac{m+m-5}{2}$=1,此時(shí)m的值為3.5,
綜上所述,m的值為3.5或6.5.
點(diǎn)評(píng) 本題考查了圓的綜合題:熟練掌握垂徑定理、圓周角定理和平行四邊形的判定與性質(zhì);理解坐標(biāo)與圖形性質(zhì);會(huì)利用勾股定理計(jì)算線段的長.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 20° | C. | 45° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1≤k<0 | B. | 1≤k≤3 | C. | k≥1 | D. | k≥3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (x-1)2=0 | B. | x2+2x-19=0 | C. | x2+4=0 | D. | x2+x+l=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com