分析 (1)根據對角線相等且互相平分的四邊形是矩形,畫出圓的兩條直徑,即可得到⊙O的一個內接矩形;
(2)根據對角線相等且互相垂直平分的四邊形是正方形,畫出圓的一條直徑,使其與AB互相垂直,即可得到⊙O的內接正方形.
解答 解:(1)如圖所示,過O作⊙O的直徑AC與BD,連接AB,BC,CD,DA,則四邊形ABCD即為所求;![]()
(2)如圖所示,延長AC,BD交于點E,連接AD,BC交于點F,連接EF并延長交⊙O于G,H,連接AH,HB,BG,GA,則四邊形AHBG即為所求.![]()
點評 本題主要考查了復雜作圖以及圓的性質的運用,解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.
科目:初中數學 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}-1$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
| 平均用水量(噸) | 頻數 | 頻率 |
| 3<x≤6 | 10 | 0.1 |
| 6<x≤9 | m | 0.2 |
| 9<x≤12 | 36 | 0.36 |
| 12<x≤15 | 25 | n |
| 15<x≤18 | 9 | 0.09 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\sqrt{3}$+$\sqrt{6}$=3 | B. | $\sqrt{2}$×$\sqrt{6}$=3$\sqrt{2}$ | C. | $\sqrt{8}$÷$\sqrt{2}$=4 | D. | ($\sqrt{12}$-$\sqrt{3}$)×$\sqrt{3}$=3 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 3x=$\frac{1}{2}$ | B. | $\frac{x+2}{5}$=$\frac{3+x}{4}$ | C. | $\frac{1}{x}$=2 | D. | 3x-2y=1 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com