分析 作直徑AD,連接CD,如圖,利用圓周角定理得到∠ACD=90°,再根據(jù)切線的性質(zhì)得∠DAB=90°,則利用等角的余角相等得到∠D=∠BAC,所以tanD=tan∠BAC=$\frac{1}{2}$,然后在Rt△ACD中利用正切定義可計(jì)算出CD=4,利用勾股定理可計(jì)算出直徑AD的長(zhǎng).從而得到⊙O的半徑.
解答 解:作直徑AD,連接CD,如圖,![]()
∵AD為直徑,
∴∠ACD=90°,
∴∠D+∠DAC=90°,
∵BA與⊙O相切于點(diǎn)A,
∴OA⊥AB,
∴∠DAB=90°,即∠DAC+∠BAC=90°,
∴∠D=∠BAC,
∴tanD=tan∠BAC=$\frac{1}{2}$,
在Rt△ACD中,tanD=$\frac{AC}{CD}$,即$\frac{2}{CD}$=$\frac{1}{2}$,解得CD=4,
∴AD=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴⊙O的半徑長(zhǎng)為$\sqrt{5}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了正切的定義.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 有兩邊相等的平行四邊形是菱形 | B. | 對(duì)角線垂直的四邊形是菱形 | ||
| C. | 有一角為90°菱形是正方形 | D. | 對(duì)角線相等的四邊形是矩形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 將拋物線y=x2向左平移4個(gè)單位后,再向下平移2個(gè)單位,則此時(shí)拋物線的解析式是y=(x+4)2-2 | |
| B. | 方程x2+2x+3=0有兩個(gè)不相等的實(shí)數(shù)根 | |
| C. | 平行四邊形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形 | |
| D. | 平分弦的直徑垂直于弦,并且平分這條弦所對(duì)的兩條弧 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x<3 | B. | x>2 | C. | x<5 | D. | x>5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com