欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,AB是⊙O的直徑,點(diǎn)P是弦BC上一動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)P作PE⊥AB,垂足為E,在射線EP上取點(diǎn)D使得DC=DP,連接DC.
(1)求證:DC是⊙O的切線;
(2)若∠CBA=30°,射線EP交⊙O于點(diǎn) F,當(dāng)點(diǎn) F恰好是弧BC的中點(diǎn)時(shí),判斷以B,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說(shuō)明理由.

分析 (1)連接OC,利用已知條件和圓的基本性質(zhì)證明OC⊥CD,即可得到直線DC是⊙O的切線;
(2)連接AC,由∠CAB=30°易得△OAC為等邊三角形,可得∠BOC=120°,由F是弧AC的中點(diǎn),易得△BOF與△COF均為等邊三角形,可得BF=BO=OC=CF,易得以B,O,C,F(xiàn)為頂點(diǎn)的四邊形是菱形.

解答 解:
(1)證明:連接OC,
∵DP=DC,
∴∠DPC=∠DCP,
∵∠DPC=∠BPE,
∴∠BPE=∠DCP,
∵PE⊥AB,
∴∠BEP=90°,
∴∠B+∠APE=90°,
∵OB=OC,
∴∠OCB=∠B,
∴∠OCB+∠DCP=90°,
∴OC⊥CD,
∴直線CD與⊙O相切;        
(2)以B、O、C、F為頂點(diǎn)的四邊形是菱形,理由如下:
連接AC,
∵∠CBA=30°,
∴∠A=60°,
∴△OAC為等邊三角形,
∴∠BOC=120°,
連接OF,BF,CF
∵F是弧BC的中點(diǎn),
∴∠BOF=∠COF=60°,
∴△BOF與△COF均為等邊三角形,
∴BF=BO=OC=CF,
∴四邊形BOCF為菱形.

點(diǎn)評(píng) 本題主要考查了切線的性質(zhì)、圓周角定理和等邊三角形的判定等,作出恰當(dāng)?shù)妮o助線利用切線的性質(zhì)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于點(diǎn)D,那么∠BDC的度數(shù)是76°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,AD、BC相交于點(diǎn)O,AD=BC,∠C=∠D=90°.
(1)求證:△ACB≌△BDA.
(2)若∠ABC=35°,求∠CAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)正多邊形的每一個(gè)內(nèi)角都等于160°,則這個(gè)正多邊形的邊數(shù)是18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,⊙O與Rt△ABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于E、F兩點(diǎn),連結(jié)DE,已知∠B=30°,⊙O的半徑為6,弧DE的長(zhǎng)度為2π.
(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.將不等式4x-3<1的解集表示在數(shù)軸上,正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,以點(diǎn)A為圓心,AC的長(zhǎng)為半徑作$\widehat{CE}$交AB于點(diǎn)E,以點(diǎn)B為圓心,BC的長(zhǎng)為半徑作$\widehat{CD}$交AB于點(diǎn)D,則陰影部分的面積為π-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.校園安全與每個(gè)師生、家長(zhǎng)和社會(huì)有著切身的關(guān)系.某校教學(xué)樓共五層,設(shè)有左、右兩個(gè)樓梯口,通常在放學(xué)時(shí),若持續(xù)不正常,會(huì)導(dǎo)致等待通過(guò)的人較多,發(fā)生擁堵,從而出現(xiàn)不安全因素.通過(guò)觀察發(fā)現(xiàn)位于教學(xué)樓二、三樓的七年級(jí)學(xué)生從放學(xué)時(shí)刻起,經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)按每分鐘12人遞增,6分鐘后經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)按每分鐘12人遞減;位于四、五樓的八年級(jí)學(xué)生從放學(xué)時(shí)刻起,經(jīng)過(guò)單個(gè)樓梯口等待人數(shù)y2與時(shí)間為t(分)滿足關(guān)系式y(tǒng)2=-4t2+48t-96(0≤t≤12).若在單個(gè)樓梯口等待人數(shù)超過(guò)80人,就會(huì)出現(xiàn)安全隱患.
(1)試寫(xiě)出七年級(jí)學(xué)生在單個(gè)樓梯口等待的人數(shù)y1(人)和從放學(xué)時(shí)刻起的時(shí)間t(分)之間的函數(shù)關(guān)系式,并指出t的取值范圍.
(2)若七、八年級(jí)學(xué)生同時(shí)放學(xué),試計(jì)算等待人數(shù)超過(guò)80人所持續(xù)的時(shí)間.
(3)為了避免出現(xiàn)安全隱患,該校采取讓七年級(jí)學(xué)生提前放學(xué)措施,要使單個(gè)樓梯口等待人數(shù)不超過(guò)80人,則七年級(jí)學(xué)生至少比八年級(jí)提前幾分鐘放學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹(shù)的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測(cè)得樹(shù)頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹(shù)的頂端E的仰角是60°,再繼續(xù)向前走到大樹(shù)底D處,測(cè)得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.
(1)求樹(shù)DE的高度;
(2)求食堂MN的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案