分析 連接BM根據(jù)相似三角形的性質(zhì)得到$\frac{AN}{AC}=\frac{MN}{BC}=\frac{1}{2}$,求得AN=2,MN=$\frac{3}{2}$,根據(jù)勾股定理得到BM=$\sqrt{B{N}^{2}+M{N}^{2}}$=$\frac{3\sqrt{5}}{2}$,推出BM是⊙O的直徑,于是得到結(jié)論.
解答
解:連接BM,∵∠BAC=∠MAN,∠ACB=∠ANM=90°,
∴△ABC∽△AMN,
∵S△AMN=$\frac{1}{4}$S△ABC,
∴$\frac{AN}{AC}=\frac{MN}{BC}=\frac{1}{2}$,
∴AN=2,MN=$\frac{3}{2}$,
∵AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∴BN=AB-AN=3,
∴BM=$\sqrt{B{N}^{2}+M{N}^{2}}$=$\frac{3\sqrt{5}}{2}$,
∵∠C=90°,
∴BM是⊙O的直徑,即四邊形BCMN的外接圓的直徑,
∴四邊形BCMN的外接圓的半徑=$\frac{1}{2}$BM=$\frac{3\sqrt{5}}{4}$.
故答案為:$\frac{3\sqrt{5}}{4}$.
點(diǎn)評(píng) 本題考查了三角形的外接圓與外心,勾股定理,圓內(nèi)接四邊形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com