分析 因為$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$=$\sqrt{{x}^{2}+{5}^{2}}$+$\sqrt{(x-4)^{2}+{1}^{2}}$,所以欲求$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值,相當(dāng)于如圖A(0,5),B(4,1),在x軸上找一點P,使得PA+PB最短,作點B關(guān)于x軸的對稱點B′(4,-1),PA+PB的最小值為AB′的長.
解答 解:∵$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$=$\sqrt{{x}^{2}+{5}^{2}}$+$\sqrt{(x-4)^{2}+{1}^{2}}$,
∴欲求$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值,相當(dāng)于如圖A(0,5),B(4,1),在x軸上找一點P,使得PA+PB最短,
作點B關(guān)于x軸的對稱點B′(4,-1),
PA+PB的最小值為AB′的長=$\sqrt{{4}^{2}+{6}^{2}}$=2$\sqrt{13}$,
∴$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值為2$\sqrt{13}$.
故答案為2$\sqrt{13}$.
點評 本題考查軸對稱-最短問題、二次根式等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,把代數(shù)問題轉(zhuǎn)化為幾何問題解決,屬于中考填空題中的壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com