分析 先由矩形的性質(zhì)得出,∠BAD=∠B=∠D=90°,AD=BC=4,AD∥BC,根據(jù)AE平分∠BAD得到∠BAE=∠EAD=45°,那么△ABE是等腰直角三角形,于是AB=BE=2,AE=$\sqrt{2}$AB=2$\sqrt{2}$.再由∠AEC的分線交AD于點(diǎn)F,∠AEF=∠CEF,由AD∥BC,得出∠CEF=∠AFE,等量代換得到∠AEF=∠AFE,那么AF=AE=2$\sqrt{2}$,DF=AD-AF=4-2$\sqrt{2}$,然后根據(jù)弧長的計(jì)算公式即可求出$\widehat{FG}$的長.
解答 解:∵四邊形ABCD是矩形,
∴∠BAD=∠B=∠D=90°,AD=BC=4,AD∥BC,
∵AE平分∠BAD交邊BC于點(diǎn)E,
∴∠BAE=∠EAD=45°,
∴△ABE是等腰直角三角形,
∴AB=BE=2,AE=$\sqrt{2}$AB=2$\sqrt{2}$.
∵∠AEC的分線交AD于點(diǎn)F,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠CEF=∠AFE,
∴∠AEF=∠AFE,
∴AF=AE=2$\sqrt{2}$,
∴DF=AD-AF=4-2$\sqrt{2}$,
∴$\widehat{FG}$的長為:$\frac{90π×(4-2\sqrt{2})}{180}$=(2-$\sqrt{2}$)π.
故答案為(2-$\sqrt{2}$)π.
點(diǎn)評 本題考查了矩形的性質(zhì),角平分線定義,等腰直角三角形的判定與性質(zhì),等腰三角形的判定,平行線的性質(zhì),弧長的計(jì)算,求出DF=4-2$\sqrt{2}$是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±2 | B. | 4 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 平行四邊形 | B. | 矩形 | C. | 菱形 | D. | 正方形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 40° | C. | 35° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com