分析 根據(jù)垂徑定理求得CE=ED=$\sqrt{3}$,然后由圓周角定理知∠DOE=60°,然后通過(guò)解直角三角形求得線段OD、OE的長(zhǎng)度,最后將相關(guān)線段的長(zhǎng)度代入S陰影=S扇形ODA-S△DOE+S△AEC.
解答 解:∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=ED=$\sqrt{3}$,
又∵∠DCA=30°,
∴∠DOE=2∠ACD=60°,∠ODE=30°,
∴OE=DE•cot60°=$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=1,OD=2OE=2,
∴S陰影=S扇形ODA-S△DOE+S△AEC=$\frac{60π×O{C}^{2}}{360}$-$\frac{1}{2}$OE×ED+$\frac{1}{2}$AE•EC=$\frac{2π}{3}$-$\frac{1}{3}\sqrt{3}$+$\frac{1}{2}\sqrt{3}$=$\frac{2π}{3}$.
故答案為$\frac{2π}{3}$.
點(diǎn)評(píng) 本題考查了垂徑定理、扇形面積的計(jì)算,通過(guò)解直角三角形得到相關(guān)線段的長(zhǎng)度是解答本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.2 | B. | 0.4 | C. | 0.6 | D. | 0.8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com