分析 要求需要爬行的最短路徑首先要把圓柱的側(cè)面積展開,得到一個(gè)矩形,然后利用勾股定理求兩點(diǎn)間的線段即可.
解答
解:如圖,把圓柱的側(cè)面展開,得到如圖所示的圖形,
其中AC=πR=10πcm,BC=20cm,
在Rt△ABC中,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10$\sqrt{4+{π}^{2}}$cm.
故答案為:10$\sqrt{4+{π}^{2}}$cm.
點(diǎn)評(píng) 本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是理解要求需要爬行的最短路徑首先要把圓柱的側(cè)面積展開,底面周長(zhǎng)和高以及所走的路線構(gòu)成一個(gè)直角三角形,然后再求線段的長(zhǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 一對(duì)鄰補(bǔ)角的平分線互相垂直 | B. | 一對(duì)同位角的平分線互相平行 | ||
| C. | 一對(duì)內(nèi)錯(cuò)角的平分線互相平行 | D. | 一對(duì)同旁內(nèi)角的平分線互相平行 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | M≤N | B. | M≥N | C. | M=N | D. | 不能確定 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com