| A. | πcm2 | B. | $\frac{2}{3}$πcm2 | C. | $\frac{1}{2}$cm2 | D. | $\frac{2}{3}$cm2 |
分析 過點(diǎn)C作CD⊥OB,CE⊥OA,則△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,$\widehat{OC}$與弦OC圍成的弓形的面積等于$\widehat{AC}$與弦AC所圍成的弓形面積,S陰影=S△AOB即可得出結(jié)論.
解答
解:過點(diǎn)C作CD⊥OB,CE⊥OA,
∵OB=OA,∠AOB=90°,
∴△AOB是等腰直角三角形,
∵OA是直徑,
∴∠ACO=90°,
∴△AOC是等腰直角三角形,
∵CE⊥OA,
∴OE=AE,OC=AC,
在Rt△OCE與Rt△ACE中,
∵$\left\{\begin{array}{l}{OC=AC}\\{OE=AE}\end{array}\right.$,
∴Rt△OCE≌Rt△ACE,
∵S扇形OEC=S扇形AEC,
∴$\widehat{OC}$與弦OC圍成的弓形的面積等于$\widehat{AC}$與弦AC所圍成的弓形面積,
同理可得,$\widehat{OC}$與弦OC圍成的弓形的面積等于$\widehat{BC}$與弦BC所圍成的弓形面積,
∴S陰影=S△AOB=$\frac{1}{2}$×1×1=$\frac{1}{2}$cm2.
故選C.
點(diǎn)評(píng) 本題考查的是扇形面積的計(jì)算與等腰直角三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出直角三角形得出S陰影=S△AOB是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一、三象限 | B. | 第二、四象限 | C. | 第一、二象限 | D. | 第三、四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com