| A. | $\frac{25}{2}$π | B. | 10π | C. | 24+4π | D. | 24+5π |
分析 作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.
解答
解:作直徑CG,連接OD、OE、OF、DG.
∵CG是圓的直徑,
∴∠CDG=90°,則DG=$\sqrt{C{G}^{2}-C{D}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
又∵EF=8,
∴DG=EF,
∴$\widehat{DG}$=$\widehat{EF}$,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=$\frac{1}{2}$π×52=$\frac{25}{2}$π.
故選A.
點(diǎn)評(píng) 本題考查扇形面積的計(jì)算,圓周角定理.本題中找出兩個(gè)陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{240}{x-20}$-$\frac{120}{x}$=4 | B. | $\frac{240}{x+20}$-$\frac{120}{x}$=4 | C. | $\frac{120}{x}$-$\frac{240}{x-20}$=4 | D. | $\frac{120}{x}$-$\frac{240}{x+20}$=4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com