分析 (1)由題可得:AP=OQ=1×t=t得到AO=PQ,根據正方形的性質得到AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°,由垂直的定義得到∠BPD=90°,根據余角的性質得到∠BPA=∠PDQ,等量代換得到AB=PQ,于是得到結論;
(2)由(1)證得△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標;
(3)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.容易得到△POE周長等于AO+CO=8,從而解決問題.
解答 解:(1)如圖,由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ,
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°,
∵DP⊥BP,
∴∠BPD=90°,
∴∠BPA=90°-∠DPQ=∠PDQ,
∵AO=PQ,AO=AB,
∴AB=PQ,
在△BAP和△PQD中,
$\left\{\begin{array}{l}{∠BAP=∠PQD}\\{∠BPA=∠PDQ}\\{AB=PQ}\end{array}\right.$,
∴△BAP≌△PQD;
(2)∵△BAP≌△PQD,
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點D坐標為(t,t);
(3)∵∠EBP=45°
∴由圖1可以得到EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=3+3
=6.
∴△POE周長是定值,該定值為6.
點評 本題考查了正方形的性質、等腰三角形的性質、全等三角形的性質與判定、勾股定理等知識,熟悉正方形與一個度數(shù)為45°的角組成的基本圖形(其中角的頂點與正方形的一個頂點重合,角的兩邊與正方形的兩邊分別相交)是解決本題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com