分析 (1)由折疊的性質可得到的條件是:①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四邊形AGHF是矩形,由AG=AF可證得四邊形AGHF是正方形;
(2)設AD=x,由折疊的性質可得:AD=AF=x(即正方形的邊長為x),BG=BD=6,CF=CD=4;進而可用x表示出BH、HC的長,即可在Rt△BHC中,由勾股定理求得AD的長,進而可求出AB的長.
解答 證明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°;
由折疊可知,AG=AF=AD,∠AGH=∠AFH=90°,
∠BAG=∠BAD,∠CAF=∠CAD,
∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;
∴∠GAF=∠BAG+∠CAF+∠BAC=90°;
∴四邊形AFHG是正方形,![]()
解:(2)∵四邊形AFHG是正方形,
∴∠BHC=90°,
又GH=HF=AD,GB=BD=6,CF=CD=4;
設AD的長為x,則BH=GH-GB=x-6,CH=HF-CF=x-4.
在Rt△BCH中,BH2+CH2=BC2,
∴(x-6)2+(x-4)2=102,
解得x1=12,x2=-2(不合題意,舍去),
∴AD=12,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{144+36}$=6$\sqrt{5}$.
點評 此題主要考查了垂徑定理、勾股定理、正方形的判定和性質以及圖形的翻折變換等知識,能夠根據(jù)折疊的性質得到與所求相關的相等角和相等邊是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 562.5元 | B. | 875元 | C. | 550元 | D. | 750元 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com