分析 連接BD,先根據(jù)勾股定理求出BD的長度,再根據(jù)勾股定理的逆定理判斷出△BCD的形狀,再利用三角形的面積公式求解即可.
解答 解:連接BD,如圖所示:![]()
∵∠DAB=90°,AB=3,AD=4,
∴BD=$\frac{1}{2}\sqrt{A{B}^{2}+A{D}^{2}}$=5,
∵52+122=132,即BD2+CD2=BC2,∴△BCD是直角三角形,∠BDC=90°,
∴四邊形ABCD的面積=△BCD的面積-△ABD的面積=$\frac{1}{2}$×5×12-$\frac{1}{2}$×3×4=24.
點(diǎn)評 本題考查的是勾股定理、勾股定理的逆定理及三角形的面積的計(jì)算;能根據(jù)勾股定理的逆定理判斷出△BCD的形狀是解答此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 42 | B. | 48 | C. | 54 | D. | 56 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com