分析 (1)連接DM、ME,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DM=$\frac{1}{2}$BC,ME=$\frac{1}{2}$BC,從而得到DM=ME,再根據(jù)等腰三角形三線合一的性質(zhì)證明;
(2)根據(jù)三角形的內(nèi)角和定理可得∠ABC+∠ACB=180°-∠A,再根據(jù)等腰三角形兩底角相等表示出∠BMD+∠CME,然后根據(jù)平角等于180°表示出∠DME即可.
解答 (1)證明:
連結(jié)DM,ME,
∵CD、BE分別是AB、AC邊上的高,
∴∠BDC=90°,∠BEC=90°,
∵M(jìn)是線段BC的中點,
∴DM=$\frac{1}{2}$BC,EM=$\frac{1}{2}$BC,
∴DM=EM,
∵N是線段DE的中點,
∴MN⊥DE;
(2)解:∠DME=180°-2∠A,
證明:∠ABC+∠ACB=180°-∠A,
∵DM=ME=BM=MC,
∴∠BMD+∠CME=(180°-2∠ABC)+(180°-2∠ACB)
=360°-2(∠ABC+∠ACB)
=360°-2(180°-∠A)
=2∠A,
∴∠DME=180°-2∠A.
點評 本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等腰三角形兩底角相等的性質(zhì),三角形的內(nèi)角和定理,整體思想的利用是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 和為零 | B. | 差為零 | C. | 積為零 | D. | 商為零 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com