欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.如圖,△ABC和△DEF均為等腰直角三角形,∠A=∠D=90°,D為BC的中點,當(dāng)△DEF繞D旋轉(zhuǎn),使DE、DF分別交邊AB、AC于M、N.
(1)求證:DM=DN;
(2)當(dāng)BC=2$\sqrt{2}$時,求四邊形AMDN的面積;
(3)若△ABC的面積為S,△MAN的面積有最大值還是有最小值?并求出這個最值.

分析 (1)根據(jù)等腰直角三角形性質(zhì)得出AD=DC,AD⊥BC,∠C=∠MAD=45°,求出∠ADM=∠CDN,根據(jù)全等三角形的判定推出即可;
(2)求出四邊形AMDN的面積等于三角形ADC的面積,即可求出答案;
(3)求出AM+AN=AC,根據(jù)面積求出AC長,根據(jù)三角形的面積得出二次函數(shù)解析式,求出最值即可.

解答 (1)證明:連接AD,
∵△BAC是等腰直角三角形,D為斜邊BC中點,
∴AD=DC,AD⊥BC,∠C=∠MAD=45°,
∵∠EDF=∠ADC=90°,
∴∠ADM=∠CDN=90°-∠ADF,
在△ADM和△CDN中,
$\left\{\begin{array}{l}{∠MAD=∠C}\\{AD=DC}\\{∠ADM=∠CDN}\end{array}\right.$,
∴△ADM≌△CDN(ASA),
∴DM=DN;

(2)解:∵△BAC是等腰直角三角形,D為斜邊BC中點,BC=2$\sqrt{2}$,
∴AD⊥BC,AD=DB=BD=$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$BC×AD=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{2}$=2,
∵△ADM≌△CDN,
∴S△ADM=S△CDN,
∴S四邊形AMDN=S△ADM+S△ADN
=S△CDN+S△ADN
=S△ADC
=$\frac{1}{2}$S△ABC
=$\frac{1}{2}$×2
=1;

(3)解:設(shè)AC=AB=x,
∵△ABC的面積為S,
∴$\frac{1}{2}$x2=S,
∴x=$\sqrt{2S}$,
即AC=AB=$\sqrt{2S}$,
∵△ADM≌△CDN,
∴AM=CN,
∴AM+AN=AC=$\sqrt{2S}$,
S△MAN=$\frac{1}{2}$AM×AN
=$\frac{1}{2}$AM($\sqrt{2S}$-AM)
=-$\frac{1}{2}$AM2+$\frac{\sqrt{2S}}{2}$AM,
∵-$\frac{1}{2}$<0,
∴開口向下,有最大值,
最大值為:$\frac{4×(-\frac{1}{2})×0-(\frac{\sqrt{2S}}{2})^{2}}{4×(-\frac{1}{2})}$=$\frac{S}{4}$.

點評 本題考查了等腰直角三角形性質(zhì),全等三角形的判定和性質(zhì),二次函數(shù)的最值的應(yīng)用,能求出二次函數(shù)的解析式和求出△ADM≌△CDN是解此題的關(guān)鍵,難度偏大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,CD是AB邊上的中線,已知∠B=45°,tan∠ACB=3,AC=$\sqrt{10}$,求:
(1)△ABC的面積;
(2)sin∠ACD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的主視圖、左視圖和俯視圖分別如圖,則該幾何體的體積為( 。
A.12πB.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.邊長為2的等邊三角形的高為( 。
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直線a有上一點O,線段OA繞點O順時旋轉(zhuǎn)90°到線段OB位置,作BD⊥a,AC⊥a,求證:CD=AC+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計算:
(1)(m-2n)2+4(m+n)(m-n)            
(2)(3-2x+y)(3+2x-y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列調(diào)查中,適合用普查方式的是( 。
A.了解瘦西湖風(fēng)景區(qū)中鳥的種類
B.了解揚(yáng)州電視臺《關(guān)注》欄目的收視率
C.了解學(xué)生對“揚(yáng)農(nóng)”牌牛奶的喜愛情況
D.航天飛機(jī)發(fā)射前的安全檢查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,E為邊長是2的正方形ABCD的中點,M為BC上一點,N為CD上一點,連EM、MN、NA,則四邊形AEMN周長的最小值為6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,AD是△ABC中∠BAC的平分線,AE是△ABC的外角平分線,AE交BC的延長線于點E,∠BAD=20°,∠E=50°,求∠ACD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案