欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.如圖,在△ABC中,AB=BC,以BC為直徑的⊙O與AC交于點D,DE⊥AB于點E.
(1)求證:DE是⊙O的切線.
(2)若sinA=$\frac{1}{3}$,DE=$\sqrt{2}$,求⊙O的直徑.

分析 (1)連接OD,根據(jù)等腰三角形的性質(zhì)和平行線的判定定理得到OD∥AB,根據(jù)垂直的定義和平行線的性質(zhì)得到∠DEA=90°,根據(jù)切線的判定定理證明即可;
(2)連接BD,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.

解答 (1)證明:連接OD,
∵OD=OC,
∴∠C=∠ODC,
∵AB=BC,
∴∠A=∠C,
∴∠ODC=∠A,
∴OD∥AB,
∴∠ODE=∠DEA;
∵DE⊥AB,
∴∠DEA=90°,
∴∠ODE=90°,即DE⊥OD,
∴DE是⊙O的切線;
(2)連接BD,
∵BC為⊙O的直徑,
∴BD⊥AC,又DE⊥AB,
∴AD2=AE•AB,
∵sinA=$\frac{1}{3}$,DE=$\sqrt{2}$,
∴AD=3$\sqrt{2}$,AE=4,
∴(3$\sqrt{2}$)2=4×AB,
解得,AB=$\frac{9}{2}$,
∴BC=$\frac{9}{2}$,
即⊙O的直徑為$\frac{9}{2}$.

點評 本題考查的是切線的判定,掌握切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知DE∥BC,∠1=∠2,求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計算:
(1)$\sqrt{12}$-$\sqrt{27}$+$\sqrt{75}$    
(2)($\sqrt{3}$-$\sqrt{2}$)2+($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.對于反比例函數(shù)y=$\frac{{k}^{2}}{x}$(k≠0),下列說法不正確的是( 。
A.它的圖象分布在第一、三象限B.點(k,k)在它的圖象上
C.它的圖象關(guān)于原點對稱D.在每個象限內(nèi)y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題:
①等腰三角形兩腰上的高相等;
②若a>b,則ac2>bc2;
③全等三角形對應(yīng)角相等;
④直角三角形兩銳角互余.
其中原命題與逆命題均為真命題的個數(shù)( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.某汽車銷售公司計劃銷售A、B兩種型號的汽車共80輛,該公司所籌資金不少于660萬元,但不超過672萬元,且所籌資金全部用于購進新車,設(shè)A型汽車購進x輛,該公司銷售A、B兩種汽車獲得利潤y(萬元),兩種汽車的成本和售價如表:
AB
成本(萬元/輛)612
售價(萬元/輛)916
(1)該公司對這兩種汽車進貨有哪幾種方案?
(2)列出y關(guān)于x的函數(shù)關(guān)系式,并通過函數(shù)的性質(zhì)判斷如何進貨該公司獲得利潤最大?
(3)根據(jù)市場調(diào)查,每輛B型汽車售價不會改變,每輛A型汽車的售價將會提高a萬元(a>0),且所進的兩種汽車可全部售出,該公司又將如何進貨獲得利潤最大?(注:利潤=售價-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解方程組:$\left\{{\begin{array}{l}{2x+y=7}\\{x-1=2y}\end{array}}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.求下列各式的值 
(1)-$\sqrt{\frac{49}{169}}$
(2)$\root{3}{-0.008}$
(3)$\sqrt{3}$($\sqrt{3}$-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.計算:
(1)-23+19;
(2)$\frac{5}{7}$×($\frac{14}{5}$-$\frac{7}{5}$);
(3)-2×32-(-2×3)2
(4)$\frac{6}{5}$×(-$\frac{1}{3}$-$\frac{1}{2}$)÷|-$\frac{5}{4}$|;
(5)(-4)2×[(-1)2015-(-$\frac{3}{4}$)+(-$\frac{1}{2}$)3].

查看答案和解析>>

同步練習(xí)冊答案