| A. | ①②④ | B. | ①③④ | C. | ①②③ | D. | ①②③④ |
分析 ①根據(jù)平行四邊形的判定方法可得到四邊形ABCD為平行四邊形,然后根據(jù)平行四邊形的面積公式計算;
②根據(jù)折疊的性質(zhì)得到AC=CD,然后根據(jù)菱形的判定方法可判斷四邊形ABDC是菱形;
③連結(jié)A′D,根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)得到CA′=CA=BD,AB=CD=A′B,∠1=∠CBA=∠2,可證明△A′CD≌△A′BD,則∠3=∠4,然后利用三角形內(nèi)角和定理得到得到∠1=∠4,則根據(jù)平行線的判定得到A′D∥BC;
④討論:當∠CBD=90°,則∠BCA=90°,由于S△A1CB=S△ABC=5,則S矩形A′CBD=10,根據(jù)勾股定理和完全平方公式進行計算;當∠BCD=90°,則∠CBA=90°,易得BC=2,而CD=5,于是得到結(jié)論.
解答
解:①∵AB=CD=5,AB∥CD,
∴四邊形ABCD為平行四邊形,
∴四邊形ABDC的面積=2×5=10;故①正確;
②∵四邊形ABDC是平行四邊形,
∵A′與D重合時,
∴AC=CD,
∵四邊形ABDC是平行四邊形,
∴四邊形ABDC是菱形;故②正確;
③連結(jié)A′D,如圖,
∵△ABC沿BC折疊得到△A′BC,
∴CA′=CA=BD,AB=CD=A′B,
在△A′CD和△A′BD中
$\left\{\begin{array}{l}{CA′=BD}\\{CD=BA′}\\{A′D=A′D}\end{array}\right.$,
∴△A′CD≌△A′BD(SSS),
∴∠3=∠4,
又∵∠1=∠CBA=∠2,
∴∠1+∠2=∠3+∠4,
∴∠1=∠4,
∴A′D∥BC,
∴∠CA′D+∠BCA′=180°;故③正確;
④設(shè)矩形的邊長分別為a,b,
當∠CBD=90°,
∵四邊形ABDC是平行四邊形,
∴∠BCA=90°,
∴S△A′CB=S△ABC=$\frac{1}{2}$×2×5=5,
∴S矩形A′CBD=10,即ab=10,
而BA′=BA=5,
∴a2+b2=25,
∴(a+b)2=a2+b2+2ab=45,
∴a+b=3$\sqrt{5}$,
當∠BCD=90°時,
∵四邊形ABDC是平行四邊形,
∴∠CBA=90°,
∴BC=2,
而CD=5,
∴(a+b)2=(2+5)2=49,
∴a+b=7,
∴此矩形相鄰兩邊之和為3$\sqrt{5}$或7.故④正確.
故選D.
點評 本題考查了四邊形綜合題:熟練掌握平四邊形的判定與性質(zhì)以及特殊平行四邊形的判定與性質(zhì);會運用折疊的性質(zhì)確定相等的線段和角.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 學(xué)生 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 成績(個) | 1 | 0 | 2 | -1 | 4 | -2 | 0 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com