分析 如圖,連結BD,取BD的中點H,連接HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質(zhì),可證得∠BME=∠CNE.
解答 解:∠BME=∠CNE,理由如下:
連結BD,取BD的中點H,連接HE、HF,
∵點E、F分別是BC、AD的中點,![]()
∴HF∥BM.HF=$\frac{1}{2}$AB,HE∥CD,HE=$\frac{1}{2}$CD,
∴∠1=∠BME,∠2=∠ENC,
∵AB=CD,
∴HF=HE,
∴∠1=∠2,
∴∠BME=∠CNE.
點評 此題考查了三角形的中位線定理,解答此題的關鍵是作出三條輔助線,構造出和中位線定理相關的圖形.此題結構精巧,考查范圍廣,綜合性強.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com