【題目】【2016高考山東理數(shù)】平面直角坐標(biāo)系
中,橢圓C:
的離心率是
,拋物線E:
的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線
與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線
與y軸交于點(diǎn)G,記
的面積為
,
的面積為
,求
的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
![]()
【答案】(Ⅰ)
;(Ⅱ)(i)見解析;(ii)
的最大值為
,此時(shí)點(diǎn)
的坐標(biāo)為![]()
【解析】
試題分析:(Ⅰ)根據(jù)橢圓的離心率和焦點(diǎn)求方程;(Ⅱ)(i)由點(diǎn)P的坐標(biāo)和斜率設(shè)出直線l的方程和拋物線聯(lián)立,進(jìn)而判斷點(diǎn)M在定直線上;(ii)分別列出
,
面積的表達(dá)式,根據(jù)二次函數(shù)求最值和此時(shí)點(diǎn)P的坐標(biāo).
試題解析:
(Ⅰ)由題意知
,可得:
.
因?yàn)閽佄锞
的焦點(diǎn)為
,所以
,
所以橢圓C的方程為
.
(Ⅱ)(i)設(shè)
,由
可得
,
所以直線
的斜率為
,因此直線
的方程為
,即
.
設(shè)
,聯(lián)立方程![]()
得
,
由
,得
且
,
因此
,
將其代入
得
,
因?yàn)?/span>
,所以直線
方程為
.
聯(lián)立方程
,得點(diǎn)
的縱坐標(biāo)為
,
即點(diǎn)
在定直線
上.
(ii)由(i)知直線
方程為
,
令
得
,所以
,
又![]()
,
所以
,
,所以
,
令
,則
,
當(dāng)
,即
時(shí),
取得最大值
,此時(shí)
,滿足
,
所以點(diǎn)
的坐標(biāo)為
,因此
的最大值為
,此時(shí)點(diǎn)
的坐標(biāo)為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程為3x+4y﹣12=0,求直線l'的方程,使得:
(1)l'與l平行,且過點(diǎn)(﹣1,3);
(2)l'與l垂直,且l'與兩軸圍成的三角形面積為4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的公比為q(q≠0),其前項(xiàng)和為Sn , 若S3 , S9 , S6成等差數(shù)列,則q3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m,
,其中m≠0.
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)當(dāng)m=1時(shí),求bn;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若對于任意的正整數(shù)n,都有Sn∈[1,3],求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【河北省衡水中學(xué)2017屆高三上學(xué)期五調(diào)】已知橢圓
,圓
的圓心
在橢圓
上,點(diǎn)
到橢圓
的右焦點(diǎn)的距離為
.
![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
作互相垂直的兩條直線
,且
交橢圓
于
兩點(diǎn),直線
交圓
于
兩點(diǎn),且
為
的中點(diǎn),求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,底面
是邊長為2的正方形,側(cè)面
為正三角形,且面
面
,
分別為棱
的中點(diǎn).
(1)求證:
平面
;
(2)(文科)求三棱錐
的體積;
(理科)求二面角
的正切值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,g(x)=x2+2mx+ ![]()
(1)用定義法證明f(x)在R上是增函數(shù);
(2)求出所有滿足不等式f(2a﹣a2)+f(3)>0的實(shí)數(shù)a構(gòu)成的集合;
(3)對任意的實(shí)數(shù)x1∈[﹣1,1],都存在一個(gè)實(shí)數(shù)x2∈[﹣1,1],使得f(x1)=g(x2),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知
bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a=
,b=2,求△ABC的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com