【題目】設(shè)定義在
上的函數(shù)
滿(mǎn)足任意
都有
,且
時(shí),
,則
,
,
的大小關(guān)系是( )
A.
B. ![]()
C.
D. ![]()
【答案】A
【解析】
函數(shù)f(x)滿(mǎn)足f(t+2)=
,可得f(x)是周期為4的函數(shù).6f(2017)=6f(1),3f(2018)
=3f(2),2f(2019)=2f(3).令g(x)=
,x∈(0,4],則g′(x)=
>0,利
用其單調(diào)性即可得出.
函數(shù)f(x)滿(mǎn)足f(t+2)=
,可得f(t+4)=
=f(t),∴f(x)是周期為4的函數(shù).
6f(2017)=6f(1),3f(2018)=3f(2),2f(2019)=2f(3).
令g(x)=
,x∈(0,4],則g′(x)=
,
∵x∈(0,4]時(shí),
,
∴g′(x)>0,g(x)在(0,4]遞增,
∴f(1)<
<
,
可得:6f(1)<3f(2)<2f(3),即6f(2017)<3f(2018)<2f(2019).
故答案為:A
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:橢圓
的焦距為2,且經(jīng)過(guò)點(diǎn)
,![]()
是橢圓上異于
的兩個(gè)動(dòng)點(diǎn).
(1)求橢圓
的方程;
(2)若
,求證:直線(xiàn)
過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)
在正視圖上的對(duì)應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對(duì)應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長(zhǎng)度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,過(guò)曲線(xiàn)
外的一點(diǎn)
(其中
,
為銳角)作平行于
的直線(xiàn)
與曲線(xiàn)分別交于
.
(Ⅰ) 寫(xiě)出曲線(xiàn)
和直線(xiàn)
的普通方程(以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建系);
(Ⅱ)若
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月10日21時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開(kāi)新聞發(fā)布會(huì),宣布人類(lèi)首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤(pán).某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長(zhǎng)為2的菱形,
底面ABCD,
,且
.
![]()
(1)證明:平面
平面
;
(2)若
,求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
的部分圖象如圖所示
![]()
(1)求
的最小正周期及解析式;
(2)設(shè)
求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCD,CD=SD,點(diǎn)M是SA的中點(diǎn),AD//BC,∠ABC=90°,AB=AD
BC=a.
![]()
(1)求證:平面MBD⊥平面SCD;
(2)若∠SDC=120°,求三棱錐C﹣MBD的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com