已知數(shù)列{an}的前n項(xiàng)和為
,
,滿足
,
(1)求
的值;
(2)猜想
的表達(dá)式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前
項(xiàng)和記為
,已知
.
(Ⅰ)求
,
,
的值,猜想
的表達(dá)式;
(Ⅱ)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足
=3n-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<
對(duì)所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定數(shù)列![]()
(1)判斷
是否為有理數(shù),證明你的結(jié)論;
(2)是否存在常數(shù)
.使
對(duì)
都成立? 若存在,找出
的一個(gè)值, 并加以證明; 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù)
,且
按某種順序排列成等差數(shù)列.
(1)求實(shí)數(shù)
的值;
(2)若等差數(shù)列
的首項(xiàng)和公差都為
,等比數(shù)列
的首項(xiàng)和公比都為
,數(shù)列
和
的前
項(xiàng)和分別為
,且
,求滿足條件的自然數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)不等式組
所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/5/i3gfi.png" style="vertical-align:middle;" />,記
內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為![]()
(1)求
的值及
的表達(dá)式;
(2)設(shè)
為數(shù)列
的前
項(xiàng)的和,其中
,問是否存在正整數(shù)
,使
成立?若存在,求出正整數(shù)
;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b是不相等的正數(shù),在a,b之間分別插入m個(gè)正數(shù)a1,a2, ,am和正數(shù)b1,b2, ,
bm,使a,a1,a2, ,am,b是等差數(shù)列,a,b1,b2, ,bm,b是等比數(shù)列.
(1)若m=5,
=
,求
的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此時(shí)m的值;
(3)求證:an>bn(n∈N*,n≤m).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}(n∈N﹡)中,a1=0,當(dāng)3an<n2時(shí),an+1=n2,當(dāng)3an>n2時(shí),an+1=3an.求a2,a3,a4,a5,猜測(cè)數(shù)列的通項(xiàng)an并證明你的結(jié)論.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com