分析 根據(jù)題意設(shè)圓心C坐標為(x,0),根據(jù)圓C過(-1,0),利用兩點間的距離公式表示出圓的半徑,利用點到直線的距離公式表示出圓心到切線l的距離d,根據(jù)已知的弦長,利用垂徑定理及勾股定理列出關(guān)于x的方程,求出方程的解得到圓心坐標及半徑,即可求出過圓心且與直線l平行的直線方程.
解答
解:設(shè)圓心C(x,0),則圓的半徑r=|BC|=|x+1|,
∴圓心C到直線l的距離|CD|=$\frac{|x+1|}{\sqrt{2}}$,弦長|AB|=2$\sqrt{2}$,
則r=$\sqrt{\frac{(x+1)^{2}}{2}+2}$=|x+1|,
整理得:x=1(不合題意,舍去)或x=-3,
∴圓心C(-3,0),半徑為2,
則圓C方程為(x+3)2+y2=4.
∴過圓心且與直線l平行的直線方程為y=x+3,即x-y+3=0.
故答案為:x-y+3=0.
點評 此題考查了直線與圓的位置關(guān)系,涉及的知識有:兩點間的距離公式,垂徑定理,勾股定理,點到直線的距離公式,以及圓的標準方程,熟練掌握公式及定理是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$,$\frac{\sqrt{3}}{2π}$ | B. | $\frac{π}{3}$,$\frac{\sqrt{3}}{2π}$ | C. | $\frac{π}{6}$,$\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{6}$,$\frac{3}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ①②③④ | B. | ①②④ | C. | ①③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -2 | B. | -$\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -3 | B. | $\sqrt{3}$ | C. | 3 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com