【題目】已知集合
.
(1)若
,求
的概率;
(2)若
,求
的概率.
【答案】(1)
(2)
【解析】試題分析:(1)因為x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以為古典概型,這樣求得總的基本事件的個數(shù),再求得滿足x,y∈Z,x+y≥0的基本事件的個數(shù),然后求比值即為所求的概率.
(2)因為x,y∈R,且圍成面積,則為幾何概型中的面積類型,先求x,y∈Z,求x+y≥0表示的區(qū)域的面積,然后求比值即為所求的概率.
試題解析:
(1)設(shè)
為事件
,
,
即
,即
.
則基本事件有:
共
個,其中滿足的基本事件有
個,所以
.故
的概率為
.
(2)設(shè)
為事件
,因為
,則基本事件為如圖四邊形
區(qū)域,事件
包括的區(qū)域為其中的陰影部分.
![]()
所以
,
故
的概率為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移
個單位長度后,所得的圖象與原圖象重合,則ω的最小值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從橢圓
上一點
向
軸作垂線,垂足恰好為橢圓的左焦點
,
是橢圓的右頂點,
是橢圓的上頂點,且
.
(1)求該橢圓
的方程;
(2)不過原點的直線
與橢圓
交于
兩點,已知
,直線
,
的斜率
,
成等比數(shù)列,記以
,
為直徑的圓的面積分別為
,求證;
為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左、右焦點分別為
,離心率
,
為橢圓
上的任意一點(不含長軸端點),且
面積的最大值為1.
(1)求橢圓
的方程;
(2)已知直線
與橢圓
交于不同的兩點
,且線段
的中點不在圓
內(nèi),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數(shù)列{an}的通項公式an;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和 Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機(jī)對該市15~65歲的人群抽樣了
人,回答問題計結(jié)果如下圖表所示:
![]()
(1)分別求出
的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,把函數(shù)
的圖象向右平移
個單位,得到函數(shù)
的圖象,若
是
在
內(nèi)的兩根,則
的值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天
名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段:
,
,
,
,
,
后得到如圖所示的頻率分布直方圖.問:![]()
(1)估計在40名讀書者中年齡分布在
的人數(shù);
(2)求40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在
的讀書者中任取2名,求這兩名讀書者年齡在
的人數(shù)
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+2x-6。
(1)證明:函數(shù)f(x)在其定義域上是增函數(shù);
(2)證明:函數(shù)f(x)有且只有一個零點;
(3)求這個零點所在的一個區(qū)間,使這個區(qū)間的長度不超過
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com