某通訊公司需要在三角形地帶OAC區(qū)域內(nèi)建造甲、乙兩種通信信號加強中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域BOC內(nèi),乙中轉(zhuǎn)站建在區(qū)域AOB內(nèi).分界線OB固定,且
百米,邊界線AC始終過點B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°,設(shè)
百米,
百米.
(1)試將
表示成
的函數(shù),并求出函數(shù)
的解析式;
(2)當
取何值時?整個中轉(zhuǎn)站的占地面積
最小,并求出其面積的最小值.![]()
(1)
;(2)當
米時,整個中轉(zhuǎn)站的占地面積
最小,最小占地面積是
平方米.
解析試題分析:(1)根據(jù)已知條件的特征可以通過面積之間的等量關(guān)系
尋求
滿足的關(guān)系式,再由此關(guān)系式進一步得到函數(shù)解析式:
,即可解得
;(2)根據(jù)題意及(1)可得
,因此要求
面積的最小值,即求函數(shù)
的最小值,通過變形可知利用基本不等式可得:![]()
,當且僅當
,即
時,等號成立,
從而可得當
米時,整個中轉(zhuǎn)站的占地面積
最小,最小占地面積是
平方米.
試題解析:(1)結(jié)合圖形可知:
,
∴
,解得
; 6分
(2)由(1)知,
,∴![]()
,當且僅當
,即
時,等號成立, 11分
答:當
米時,整個中轉(zhuǎn)站的占地面積
最小,最小占地面積是
平方米. .....13分
考點:1.三角函數(shù)的運用;2.利用基本不等式函數(shù)求極值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(a,b為常數(shù))且方程f(x)-x+12=0有兩個實根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,某人想制造一個支架,它由四根金屬桿
構(gòu)成,其底端三點
均勻地固定在半徑為
的圓
上(圓
在地面上),
三點相異且共線,
與地面垂直. 現(xiàn)要求點
到地面的距離恰為
,記用料總長為
,設(shè)
.![]()
(1)試將
表示為
的函數(shù),并注明定義域;
(2)當
的正弦值是多少時,用料最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知命題p:函數(shù)
在
上單調(diào)遞減.
⑴求實數(shù)m的取值范圍;
⑵命題q:方程
在
內(nèi)有一個零點.若p或q為真,p且q為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f
=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com