【題目】已知
,
是函數(shù)
(其中常數(shù)
)圖象上的兩個動點,點
,若
的最小值為0,則函數(shù)
的最大值為__________.
【答案】![]()
【解析】
先推出f(x)的圖象關于直線x=a對稱,然后得出直線PA,PB分別與函數(shù)圖象相切時,![]()
的最小值為0,再通過導數(shù)的幾何意義得切線的斜率,解出a=1,結合圖象可得x=1時,f(x)的最大值為
.
解:A,B是函數(shù)f(x)
(其中a>0)圖象上的兩個動點,
當x<a時,f(x)=f(2a﹣x)=﹣e(2a﹣x)﹣2a=﹣e﹣x,
∴函數(shù)f(x)的圖象關于直線x=a對稱.
當點A,B分別位于分段函數(shù)的兩支上,
且直線PA,PB分別與函數(shù)圖象相切時,![]()
的最小值為0,
設PA與f(x)=﹣e﹣x相切于點A(x0,y0),
∴f′(x)=e﹣x,∴kAP=f′(x0)=e
,解得x0=a﹣1,
∵![]()
的最小值為0,∴
⊥
,
∴kPA=tan45°=1,∴e
1,∴x0=0,
∴a=1,∴f(x)max
.
故答案為:![]()
![]()
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側面
底面ABCD,且
,若E,F分別為PC,BD的中點.
![]()
(I)求證:EF//平面PAD;
(II)求三棱錐F-DEC的體積;
(III)在線段CD上是否存在一點G,使得平面
平面PDC?若存在,請說明其位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從拋物線
上任意一點P向x軸作垂線段,垂足為Q,點M是線段
上的一點,且滿足![]()
(1)求點M的軌跡C的方程;
(2)設直線
與軌跡c交于
兩點,T為C上異于
的任意一點,直線
,
分別與直線
交于
兩點,以
為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點
到定點
和到直線
的距離之比為
,設動點
的軌跡為曲線
,過點作垂直于
軸的直線與曲線
相交于兩點,直線
與曲線
交于
兩點,與
相交于一點(交點位于線段
上,且與
不重合).
(1)求曲線
的方程;
(2)當直線
與圓
相切時,四邊形
的面積是否有最大值?若有,求出其最大值及對應的直線的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級的第二學期,因某學科的任課教師王老師調動工作,于是更換了另一名教師趙老師繼任.第二學期結束后從全學年的該門課的學生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
![]()
學校秉持均衡發(fā)展、素質教育的辦學理念,對教師的教學成績實行績效考核,績效考核方案規(guī)定:每個學期的學生成績中與其中位數(shù)相差在
范圍內(含
)的為合格,此時相應的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學績效考核平均成績哪個大?
(Ⅱ)是否有
的把握認為“學生成績取得優(yōu)秀與更換老師有關”.
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農戶計劃種植萵筍和西紅柿,種植面積不超過
畝,投入資金不超過
萬元,假設種植萵筍和西紅柿的產量、成本和售價如下表:
年產量/畝 | 年種植成本/畝 | 每噸售價 | |
萵筍 | 5噸 | 1萬元 | 0.5萬元 |
西紅柿 | 4.5噸 | 0.5萬元 | 0.4萬元 |
那么,該農戶一年種植總利潤(總利潤=總銷售收入-總種植成本)的最大值為____萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線有光學性質,即由其焦點射出的光線經拋物線反射后,沿平行于拋物線對稱軸的方向射出,反之亦然.如圖所示,今有拋物線
,一光源在點
處,由其發(fā)出的光線沿平行于拋物線的對稱軸的方向射向拋物線上的點
,反射后,又射向拋物線上的點
,再反射后又沿平行于拋物線的對稱軸方向射出,途中遇到直線
上的
點,再反射后又射回點
.設
,
兩點的坐標分別是
,
.
![]()
(1)證明:
;
(2)若四邊形
是平行四邊形,且點
的坐標為
.求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知
,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com