【題目】在
ABC中,a、b是方程x2-2
x+2=0的兩根,且2cos(A+B)=-1.
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間造
、
型兩類(lèi)桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張
、
型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張
、
型型桌子分別獲利潤(rùn)2千元和3千元.
(1)列出滿(mǎn)足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是偶函數(shù),且滿(mǎn)足
,當(dāng)
時(shí),
,當(dāng)
時(shí),
的最大值為
.
(1)求實(shí)數(shù)
的值;
(2)函數(shù)
,若對(duì)任意的
,總存在
,使不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.
如圖,在陽(yáng)馬
中,側(cè)棱
底面
,且
,過(guò)棱
的中點(diǎn)
,作
交
于點(diǎn)
,連接![]()
![]()
(Ⅰ)證明:
.試判斷四面體
是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)
出結(jié)論);若不是,說(shuō)明理由;
(Ⅱ)若面
與面
所成二面角的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,且離心率為
,
為橢圓上任意一點(diǎn),當(dāng)
時(shí),
的面積為1.
(1)求橢圓
的方程;
(2)已知點(diǎn)
是橢圓
上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線
,
分別與橢圓交于點(diǎn)
,
,設(shè)直線
的斜率為
,直線
的斜率為
,求證:
為定值.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)設(shè)
由題
,由此求出
,可得橢圓
的方程;
(2)設(shè)
,
,
當(dāng)直線
的斜率不存在時(shí),可得
;
當(dāng)直線
的斜率不存在時(shí),同理可得
.
當(dāng)直線
、
的斜率存在時(shí),
,
設(shè)直線
的方程為
,則由
消去
通過(guò)運(yùn)算可得
,同理可得
,由此得到直線
的斜率為
,
直線
的斜率為
,進(jìn)而可得
.
試題解析:(1)設(shè)
由題
,
解得
,則
,
橢圓
的方程為
.
(2)設(shè)
,
,
當(dāng)直線
的斜率不存在時(shí),設(shè)
,則
,
直線
的方程為
代入
,可得
,
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當(dāng)直線
的斜率不存在時(shí),同理可得
.
當(dāng)直線
、
的斜率存在時(shí),
,
設(shè)直線
的方程為
,則由
消去
可得:
,
又
,則
,代入上述方程可得
,
,則![]()
,
設(shè)直線
的方程為
,同理可得
,
直線
的斜率為
,
直線
的斜率為
,
.
所以,直線
與
的斜率之積為定值
,即
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程;
(2)在曲線
上取兩點(diǎn)
,
與原點(diǎn)
構(gòu)成
,且滿(mǎn)足
,求面積
的最大值.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線
的直角坐標(biāo)方程為
,
,消去參數(shù)
可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(
),
,(
),
,
,
由此可求
面積的最大值.
試題解析:(1)由題意可知直線
的直角坐標(biāo)方程為
,
曲線
是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標(biāo)方程為
,
即
.
(2)由(1)不妨設(shè)M(
),
,(
),
,
![]()
,
當(dāng)
時(shí),
,
所以△MON面積的最大值為
.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)
的定義域?yàn)?/span>
;
(1)求實(shí)數(shù)
的取值范圍;
(2)設(shè)實(shí)數(shù)
為
的最大值,若實(shí)數(shù)
,
,
滿(mǎn)足
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知圓
的半徑為2,圓心在
軸的正半軸上,且與直線
相切.
(1)求圓
的方程。
(2)在圓
上,是否存在點(diǎn)
,使得直線
與圓
相交于不同的兩點(diǎn)
,且△
的面積最大?若存在,求出點(diǎn)
的坐標(biāo)及對(duì)應(yīng)的△
的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com