【題目】為參與某次救援,潛水員需潛至水下30米處進(jìn)行作業(yè).在下潛與返回水面的過程中保持勻速,速度均為
米/分鐘(
,
為常數(shù)),下潛過程中每分鐘耗氧量與速度
的平方成正比,當(dāng)速度為1米/分鐘時,每分鐘耗氧量為0.2升;在水下30米作業(yè)時,每分鐘耗氧量為0.4升:返回水面的過程中每分鐘耗氧量為0.2升假定氧氣瓶中氧氣為20升,潛水員下潛時開始使用氧氣瓶中的氧氣,返回到水面時氧氣瓶中氧氣恰好用盡.
(1)試求潛水員在水下30米作業(yè)的時間
(單位:分鐘)與速度
的函數(shù)解析式;
(2)試求潛水員在水下30米能作業(yè)的最長時間.
【答案】(1)
;(2)分類討論,詳見解析.
【解析】
(1)下潛過程中每分鐘耗氧量與速度
的平方成正比,則下潛每分鐘耗氧量為
,上升和下潛的時間為
,即可求出
,整理即可,
(2)根據(jù)(1)的函數(shù)解析式,需要分類討論,根據(jù)函數(shù)的單調(diào)性和基本不等式即可求出.
解:(1)下潛過程中每分鐘耗氧量與速度
的平方成正比,則下潛每分鐘耗氧量為
,上升和下潛的時間為
,則
,
整理可得
,(
為常數(shù))
(2)由(1)可知,當(dāng)
時,
,當(dāng)且僅當(dāng)
時取等號,
當(dāng)
時,易知函數(shù)
在
上為減函數(shù),![]()
∴
,
故當(dāng)
潛水員在水下30米能作業(yè)的最長時間為20分鐘,
當(dāng)
時,潛水員在水下30米能作業(yè)的最長時間為
分鐘
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,命題
:對
,不等式
恒成立;命題
,使得
成立.
(1)若
為真命題,求
的取值范圍;
(2)當(dāng)
時,若
假,
為真,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(
,
)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
是自然對數(shù)的底數(shù))
(1)若
在R上單調(diào)遞增,求正數(shù)a的取值范圍;
(2)若
f(x)在
處導(dǎo)數(shù)相等,證明:
;
(3)當(dāng)
時,證明:對于任意
,若
,則直線
與曲線
有唯一公共點(注:當(dāng)
時,直線
與曲線
的交點在y軸兩側(cè)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小劉同學(xué)大學(xué)畢業(yè)后自主擇業(yè),回到農(nóng)村老家發(fā)展蜜桔收購,然后賣出去,幫助村民致富.小劉打算利用“互聯(lián)網(wǎng)+”的模式進(jìn)行銷售.為了更好地銷售,假設(shè)該村每顆蜜柚樹結(jié)果50個,現(xiàn)隨機(jī)選了兩棵樹的蜜柚摘下來進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:千克)的個數(shù):
,10;
,10;
,15;
,40;
,20;
,5.
(1)作出其頻率分布直方圖并求其眾數(shù);
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村蜜袖樹上大約還有100顆樹的蜜柚待出售,小劉提出兩種收購方案:
![]()
A.所有蜜柚均以16元/千克收購;
B.低于2.25千克的蜜柚以22元/個收購,高于或等于2.25千克的以30元/個收購.請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=3.
![]()
(Ⅰ)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,右焦點為
,以原點
為圓心,橢圓
的短半軸長為半徑的圓與直線
相切.
![]()
(1)求橢圓
的方程;
(2)如圖,過定點
的直線
交橢圓
于
兩點,連接
并延長交
于
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計算機(jī)考試分理論考試與實際操作兩部分,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格”,并頒發(fā)合格證書甲、乙、丙三人在理論考試中“合格”的概率依次為
,
,
,在實際操作考試中“合格”的概率依次為
,
,
,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時進(jìn)行理論與實際操作兩項考試,誰獲得合格證書的可能性最大?
(2)這三人進(jìn)行理論與實際操作兩項考試后,求恰有兩人獲得合格證書的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于某設(shè)備的使用年限
(年)和所支出的維修費
(萬元)有如下統(tǒng)計資料:
![]()
若由資料知,
對
呈線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)估計使用年限為10年時,維修費用約是多少?(精確到兩位小數(shù));
(3)計算第2年和第6年的殘差.
附:回歸直線
的斜率和截距的最小二乘估計分別為
;
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com