【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
處取得極值,對任意
恒成立,求實(shí)數(shù)
的最大值.
【答案】(1)見解析;(2)![]()
【解析】試題分析:(1)第(1)問,直接利用導(dǎo)數(shù)求函數(shù)
的單調(diào)區(qū)間.(2)第(2)問,
先分離參數(shù)得到對任意x∈(0,+∞),
恒成立,再利用導(dǎo)數(shù)求函數(shù)
的最小值得解.
試題解析:
(1)f(x)的定義域?yàn)?/span>(0,+∞),
,當(dāng)a>0時(shí),由
<0,得
;由
>0,得
,∴f(x)在
上遞減,在
上遞增.
(2) ∵函數(shù)f(x)在x=1處取得極值,
∴
=a-1=0,則a=1,從而f(x)=x-1-ln x, x∈(0,+∞).
因此,對任意x∈(0,+∞),f(x)≥bx-2恒成立
對任意x∈(0,+∞),
恒成立,令
,則
,令
=0,得x=e2,則g(x)在(0,e2)上遞減,在(e2,+∞)上遞增,∴g(x)min=g(e2)=
,即
,故實(shí)數(shù)b的最大值是1-
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過圓x2+(y-2)2=4外一點(diǎn)A(3,-2),引圓的兩條切線,切點(diǎn)為T1,T2,則直線T1T2的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為
,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)
中
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)
在
處取得極值,
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ2=
.
(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x+4y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AA1
AB
AC
2,AB⊥AC,M是棱BC的中點(diǎn)點(diǎn)P在線段A1B上.
(1)若P是線段A1B的中點(diǎn),求直線MP與直線AC所成角的大;
(2)若
是
的中點(diǎn),直線
與平面
所成角的正弦值為
,求線段BP的長度.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞增區(qū)間;
(2)對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為橢圓
的左右焦點(diǎn),點(diǎn)
在橢圓上,且
.
(1)求橢圓
的方程;
(2)過
的直線
分別交橢圓
于
和
,且
,問是否存在常數(shù)
,使得
等差數(shù)列?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
的值域;
(2)若將函數(shù)
向右平移
個(gè)單位得到函數(shù)
,且
為奇函數(shù).
①求
的最小值;
②當(dāng)
取最小值時(shí),若
與函數(shù)
在y軸右側(cè)的交點(diǎn)橫坐標(biāo)依次為
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com