【題目】設(shè)函數(shù)
的最大值為
,最小值為
,則( )
A.存在實數(shù)
,使![]()
B.存在實數(shù)
,使![]()
C.對任意實數(shù)
,有![]()
D.對任意實數(shù)
,有![]()
【答案】A
【解析】
將函數(shù)整理為a(sinx﹣ycosx)=(a2+1)(1﹣y),,再由輔助角公式和正弦函數(shù)的值域,得到不等式,結(jié)合韋達(dá)定理及基本不等式,即可得到答案.
y
(x∈R),
即有a(sinx﹣ycosx)=(a2+1)(1﹣y),
即為a
sin(x﹣θ)=(a2+1)(1﹣y),θ為輔助角.
由x∈R,|sin(x﹣θ)|≤1,
可得|(a2+1)(1﹣y)|≤|a
|,
即有(a2+1)2(y﹣1)2≤a2(1+y2),
化簡可得(a4+a2+1)y2﹣2(a4+3a2+1)y+(a4+a2+1)≤0,
由于a4+a2+1>0恒成立,
判別式4(a4+3a2+1)2﹣4(a4+a2+1)2>0恒成立,
即有不等式的解集為[m(a),M(a)],
由韋達(dá)定理可得a∈R,m(a)M(a)=1,且m(a)+M(a)>,故m(a),M(a)同正,則m(a)+M(a)>
,故存在實數(shù)
,使![]()
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,點
在線段
上,
,
是線段
的中點,且三棱錐
的體積是四棱錐
體積的
.
![]()
(1)若
是
的中點,證明:平面
平面
;
(2)若
平面
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
在橢圓
上,
、
分別為
的左、右頂點,直線
與
的斜率之積為
,
為橢圓的右焦點,直線
.
(1)求橢圓
的方程;
(2)直線
過點
且與橢圓
交于
、
兩點,直線
、
分別與直線
交于
、
兩點.試問:以
為直徑的圓是否過定點?如果是,求出定點坐標(biāo),否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)
、
,定義
.
(1)證明:
;
(2)若
,
,證明:
是周期函數(shù);
(3)若
,
,
,
,
,證明:
是周期函數(shù)的充要條件是
為有理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
的定義域
恰是不等式
的解集,其值域為
,函數(shù)
的定義域為
,值域為
.
(1)求
定義域
和值域
;
(2)試用單調(diào)性的定義法解決問題:若存在實數(shù)
,使得函數(shù)
在
上單調(diào)遞減,
上單調(diào)遞增,求實數(shù)
的取值范圍并用
表示
;
(3)是否存在實數(shù)
,使
成立?若存在,求實數(shù)
的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
的焦點為
,
是拋物線上關(guān)于
軸對稱的兩點,點
是拋物線準(zhǔn)線
與
軸的交點,
是面積為
的直角三角形.
(1)求拋物線的方程;
(2)點
在拋物線上,
是直線
上不同的兩點,且線段
的中點都在拋物線上,試用
表示
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在
,
實驗地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測其生長情況,分別在實驗地隨機(jī)抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
![]()
(1)求圖中
的值;
(2)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的極坐標(biāo)方程和
的直角坐標(biāo)方程;
(2)設(shè)
是曲線
上一點,此時參數(shù)
,將射線
繞原點
逆時針旋轉(zhuǎn)
交曲線
于點
,記曲線
的上頂點為點
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,證明:函數(shù)
在
上單調(diào)遞減;
(Ⅱ)是否存在實數(shù)
,使得函數(shù)
在
內(nèi)存在兩個極值點?若存在,求實數(shù)
的取值范圍;若不存在,請說明理由. (參考數(shù)據(jù):
,
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com