【題目】某公司為了準(zhǔn)確把握市場(chǎng),做好產(chǎn)品計(jì)劃,特對(duì)某產(chǎn)品做了市場(chǎng)調(diào)查:先銷(xiāo)售該產(chǎn)品50天,統(tǒng)計(jì)發(fā)現(xiàn)每天的銷(xiāo)售量
分布在
內(nèi),且銷(xiāo)售量
的分布頻率滿足: ![]()
(1)求
的值并估計(jì)銷(xiāo)售量的平均數(shù);
(2)若銷(xiāo)售量大于等于80,則稱(chēng)該日暢銷(xiāo),其余為滯銷(xiāo).在暢銷(xiāo)日中用分層抽樣的方法隨機(jī)抽取6天,再?gòu)倪@6天中隨機(jī)抽取3天進(jìn)行統(tǒng)計(jì),求這3天不都來(lái)自同一組的概率.
【答案】(1)
,平均數(shù)81;(2)
.
【解析】試題分析:(1)由題知
解得
,將n的值分別代入對(duì)應(yīng)的區(qū)間得到參數(shù)a值,再計(jì)算平均數(shù);(2)根據(jù)題意得到各組抽取的天數(shù)分別為3,3,由間接法得到概率值
.
解析:
(1)由題知
解得
,
可取
,
,
,
,
,
代入
中,
得
,解得
.
銷(xiāo)售量在
,
,
,
,
內(nèi)的頻率分別是0.1,0.1,0.2,0.3,0.3,銷(xiāo)售量的平均數(shù)為
.
(2)銷(xiāo)售量在
,
內(nèi)的頻率之比為
,故各組抽取的天數(shù)分別為3,3,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方體
,直線
與平面
所成角為
垂直
于點(diǎn)
為
的中點(diǎn).
![]()
(1)求直線
與平面
所成角的正弦值;
(2)線段
上是否存在點(diǎn)
,使得二面角
的余弦值為
?若存在,確定
點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
過(guò)點(diǎn)
,且離心率為
.過(guò)點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)
為橢圓
的右頂點(diǎn),探究:
是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.(其中,
,
分別是直線
、
的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在
范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在
內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:
![]()
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面
列聯(lián)表,并回答是否有
以上的把握認(rèn)為“桔柚直徑與所在基地有關(guān)”?
![]()
(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù)
(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(3)記甲基地直徑在
范圍內(nèi)的五個(gè)桔柚分別為
,現(xiàn)從中任取二個(gè),求含桔柚
的概率.
附:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018海南高三階段性測(cè)試(二模)】如圖,在直三棱柱
中,
,
,點(diǎn)
為
的中點(diǎn),點(diǎn)
為
上一動(dòng)點(diǎn).
![]()
(I)是否存在一點(diǎn)
,使得線段
平面
?若存在,指出點(diǎn)
的位置,若不存在,請(qǐng)說(shuō)明理由.
(II)若點(diǎn)
為
的中點(diǎn)且
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,且點(diǎn)
到橢圓
上任意一點(diǎn)的最大距離為3,橢圓
的離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為
的直線
與以線段
為直徑的圓相交于
、
兩點(diǎn),與橢圓相交于
、
,且
?若存在,求出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中, PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,
,連接CE并延長(zhǎng)交AD于F.
(Ⅰ)求證:AD⊥CG;
(Ⅱ)求平面BCP與平面DCP的夾角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
![]()
(1)現(xiàn)按分層抽樣從質(zhì)量為
,
的芒果中隨機(jī)抽取
個(gè),再?gòu)倪@
個(gè)中隨機(jī)抽取
個(gè),記隨機(jī)變量
表示質(zhì)量在
內(nèi)的芒果個(gè)數(shù),求
的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,該種植園中還未摘下的芒果大約還有
個(gè),經(jīng)銷(xiāo)商提出如下兩種收購(gòu)方案:
A:所以芒果以
元/千克收購(gòu);
B:對(duì)質(zhì)量低于
克的芒果以
元/個(gè)收購(gòu),高于或等于
克的以
元/個(gè)收購(gòu).
通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓
的圓心到直線
的距離;
(2)設(shè)圓
與直線
交于點(diǎn)
,
,若點(diǎn)
的坐標(biāo)為
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com