【題目】已知函數(shù)
.
(1)若
,求曲線在
點(diǎn)處的切線方程;
(2)若曲線
與直線
只有一個(gè)交點(diǎn),求實(shí)數(shù)
的取值范圍.
【答案】(1)
和
;(2)
.
【解析】
試題(1)求點(diǎn)
處的切線方程,只要求出導(dǎo)數(shù)
,則有切線方程為
;(2)曲線
與直線
只有一個(gè)交點(diǎn),說(shuō)明關(guān)于
的方程
只有一個(gè)實(shí)根,
不可能是根,因此方程可轉(zhuǎn)化為方程
只有一個(gè)實(shí)根,這樣問(wèn)題又轉(zhuǎn)化為函數(shù)
的圖象與直線
只有一個(gè)交點(diǎn),因此只要研究函數(shù)
的單調(diào)性,極值,函數(shù)值變化情況,作出簡(jiǎn)圖就可得出結(jié)論.
試題解析:(1)
,
,
,所以切線方程為
.
(2)曲線
與直線
只有一個(gè)交點(diǎn),等價(jià)于關(guān)于
的方程
只有一個(gè)實(shí)根.
顯然
,所以方程
只有一個(gè)實(shí)根.
設(shè)函數(shù)
,則
.
設(shè)
,
,
為增函數(shù),又
.
所以當(dāng)
時(shí),
,
為增函數(shù);
當(dāng)
時(shí),
,
為減函數(shù);
當(dāng)
時(shí),
,
為增函數(shù);
所以
在
時(shí)取極小值
.
又當(dāng)
趨向于
時(shí),
趨向于正無(wú)窮;
又當(dāng)
趨向于負(fù)無(wú)窮時(shí),
趨向于負(fù)無(wú)窮;
又當(dāng)
趨向于正無(wú)窮時(shí),
趨向于正無(wú)窮.所以
圖象大致如圖所示:
所以方程
只有一個(gè)實(shí)根時(shí),實(shí)數(shù)
的取值范圍為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某單位的食堂中,食堂每天以
元/斤的價(jià)格購(gòu)進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場(chǎng).根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂某天購(gòu)進(jìn)了80斤米粉,以
(單位:斤)(其中
)表示米粉的需求量,
(單位:元)表示利潤(rùn).
(Ⅰ)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);
(Ⅱ) 將
表示為
的函數(shù);
(Ⅲ)根據(jù)直方圖估計(jì)該天食堂利潤(rùn)不少于760元的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)
與答題正確率
﹪的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):
| 1 | 2 | 3 | 4 |
| 20 | 30 | 50 | 60 |
(1)求
關(guān)于
的線性回歸方程,并預(yù)測(cè)答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);
(2)若用
表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間
內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
=
,
=
-
,
樣本數(shù)據(jù)
的標(biāo)準(zhǔn)差為: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合
,若對(duì)于任意實(shí)數(shù)對(duì)
,存在
,使
成立,則稱集合
是“垂直對(duì)點(diǎn)集”;下列四個(gè)集合中,是“垂直對(duì)點(diǎn)集”的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinC+cosC=1﹣sin
,
(1)求sinC的值;
(2)若△ABC的外接圓面積為(4+
)π,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)開(kāi)發(fā)生產(chǎn)了一種大型電子產(chǎn)品,生產(chǎn)這種產(chǎn)品的年固定成本為2500萬(wàn)元,每生產(chǎn)
百件,需另投入成本
(單位:萬(wàn)元),當(dāng)年產(chǎn)量不足30百件時(shí),
;當(dāng)年產(chǎn)量不小于30百件時(shí),
;若每件電子產(chǎn)品的售價(jià)為5萬(wàn)元,通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的電子產(chǎn)品能全部銷售完.
(1)求年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(百件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少百件時(shí),該企業(yè)在這一電子產(chǎn)品的生產(chǎn)中獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
有兩個(gè)不相等的正零點(diǎn),求
的取值范圍;
(2)若函數(shù)
在
上的最小值為-3,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體
中,
,平面
經(jīng)過(guò)
,直線
,則平面
截該正方體所得截面的面積為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),直線
和圓
交于
,
兩點(diǎn).
(1)求圓心的極坐標(biāo);
(2)直線
與
軸的交點(diǎn)為
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com