分析 (1)由正弦定理可得:sin2B=sinA=sin(B+C),可得2B=A,或2B=π-A=(A+B+C)-A,即可解得A=2B或B=C.
(2)由已知及余弦定理可得$\frac{3}{4}$=$\frac{9+{c}^{2}-4}{2×3×c}$,整理可得:2c2-9c+10=0,即可解得c的值.
解答 解:(1)證明:∵a=2bcosB,由正弦定理可得:2sinBcosB=sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sin2B=sinA=sin(B+C),
∴2B=A,或2B=π-A=(A+B+C)-A,
∴A=2B或B=C,得證;
(2)∵a=3,b=2,a=2bcosB.
∴cosB=$\frac{a}{2b}$=$\frac{3}{4}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{9+{c}^{2}-4}{2×3×c}$,整理可得:2c2-9c+10=0,
∴解得:c=2或$\frac{5}{2}$.
點評 本題主要考查了正弦定理,余弦定理,正弦函數(shù)的圖象和性質(zhì)的應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{1}{4}$,$\frac{1}{3}$) | B. | [$\frac{1}{4}$,$\frac{1}{3}$) | C. | (-∞,$\frac{1}{3}$) | D. | [$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com