欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知實(shí)數(shù)x,y滿足x2+y2≤1,則|2x+y-4|+|6-x-3y|的最大值是15.

分析 由題意可得2x+y-4<0,6-x-3y>0,去絕對(duì)值后得到目標(biāo)函數(shù)z=-3x-4y+10,然后結(jié)合圓心到直線的距離求得|2x+y-4|+|6-x-3y|的最大值.

解答 解:如圖,

由x2+y2≤1,
可得2x+y-4<0,6-x-3y>0,
則|2x+y-4|+|6-x-3y|=-2x-y+4+6-x-3y=-3x-4y+10,
令z=-3x-4y+10,得$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$,
如圖,

要使z=-3x-4y+10最大,則直線$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$在y軸上的截距最小,
由z=-3x-4y+10,得3x+4y+z-10=0.
則$\frac{|z-10|}{5}=1$,即z=15或z=5.
由題意可得z的最大值為15.
故答案為:15.

點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的各項(xiàng)均為正數(shù),bn=n(1+$\frac{1}{n}$)nan(n∈N+),e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)=1+x-ex的單調(diào)區(qū)間,并比較(1+$\frac{1}{n}$)n與e的大。
(2)計(jì)算$\frac{_{1}}{{a}_{1}}$,$\frac{_{1}_{2}}{{a}_{1}{a}_{2}}$,$\frac{_{1}{_{2}b}_{3}}{{a}_{1}{a}_{2}{a}_{3}}$,由此推測計(jì)算$\frac{_{1}_{2}…_{n}}{{a}_{1}{a}_{2}…{a}_{n}}$的公式,并給出證明;
(3)令cn=(a1a2…an)${\;}^{\frac{1}{n}}$,數(shù)列{an},{cn}的前n項(xiàng)和分別記為Sn,Tn,證明:Tn<eSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=4x-x4,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)曲線y=f(x)與x軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對(duì)于任意的實(shí)數(shù)x,都有f(x)≤g(x);
(Ⅲ)若方程f(x)=a(a為實(shí)數(shù))有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,求證:x2-x1≤-$\frac{a}{3}$+4${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算:log2$\frac{\sqrt{2}}{2}$=$-\frac{1}{2}$,2${\;}^{lo{g}_{2}3+lo{g}_{4}3}$=$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)當(dāng)b=$\frac{{a}^{2}}{4}$+1時(shí),求函數(shù)f(x)在[-1,1]上的最小值g(a)的表達(dá)式.
(Ⅱ)已知函數(shù)f(x)在[-1,1]上存在零點(diǎn),0≤b-2a≤1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點(diǎn)都在球O的表面上,且球O的表面積為7π,則三棱柱ABC-A1B1C1的體積為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在[t,+∞)上的函數(shù)f(x)、g(x)單調(diào)遞增,f(t)=g(t)=M,若對(duì)任意k>M存在x1<x2,使得f(x1)=g(x2)=k成立,則稱g(x)是f(x)在[t,+∞)上的“追逐函數(shù)”,已知f(x)=x2,給出下列四個(gè)函數(shù):
①g(x)=x;
②g(x)=lnx+1;
③g(x)=2x-1;
④g(x)=2-$\frac{1}{x}$;
其中f(x)在[1,+∞)上的“追逐函數(shù)”有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a,b∈(0,2),則函數(shù)f(x)=$\frac{1}{3}$ax3+2x2+4bx+1存在極值的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

同步練習(xí)冊答案