分析 由題意可得2x+y-4<0,6-x-3y>0,去絕對(duì)值后得到目標(biāo)函數(shù)z=-3x-4y+10,然后結(jié)合圓心到直線的距離求得|2x+y-4|+|6-x-3y|的最大值.
解答 解:如圖,![]()
由x2+y2≤1,
可得2x+y-4<0,6-x-3y>0,
則|2x+y-4|+|6-x-3y|=-2x-y+4+6-x-3y=-3x-4y+10,
令z=-3x-4y+10,得$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$,
如圖,![]()
要使z=-3x-4y+10最大,則直線$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$在y軸上的截距最小,
由z=-3x-4y+10,得3x+4y+z-10=0.
則$\frac{|z-10|}{5}=1$,即z=15或z=5.
由題意可得z的最大值為15.
故答案為:15.
點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1+2ln2}{4}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{1-ln2}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com