【題目】河北省高考綜合改革從2018年秋季入學(xué)的高一年級(jí)學(xué)生開始實(shí)施,新高考將實(shí)行“3+1+2”模式,其中3表示語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科必選,1表示從物理、歷史兩科中選擇一科,2表示從化學(xué)、生物、政治、地理四科中選擇兩科.某校2018級(jí)入學(xué)的高一學(xué)生選科情況如下表:
選科組合 | 物化生 | 物化政 | 物化地 | 物生政 | 物生地 | 物政地 | 史政地 | 史政化 | 史生政 | 史地化 | 史地生 | 史化生 | 合計(jì) |
男 | 130 | 45 | 55 | 30 | 25 | 15 | 30 | 10 | 40 | 10 | 15 | 20 | 425 |
女 | 100 | 45 | 50 | 35 | 35 | 35 | 40 | 20 | 55 | 15 | 25 | 20 | 475 |
合計(jì) | 230 | 90 | 105 | 65 | 60 | 50 | 70 | 30 | 95 | 25 | 40 | 40 | 900 |
(1)完成下面的
列聯(lián)表,并判斷是否在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為“選擇物理與學(xué)生的性別有關(guān)”?
(2)以頻率估計(jì)概率,從該校2018級(jí)高一學(xué)生中隨機(jī)抽取3名同學(xué),設(shè)這三名同學(xué)中選擇物理的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
選擇物理 | 不選擇物理 | 合計(jì) | |
男 | 425 | ||
女 | 475 | ||
合計(jì) | 900 |
附表及公式:![]()
| 0.150 | 0.100 | 0.050 | 0.010 |
| 2.072 | 2.706 | 3.841 | 6.635 |
【答案】(1)填表見解析,不能在犯錯(cuò)誤概率不超過0.01的前提下認(rèn)為“選擇物理與學(xué)生的性別有關(guān)”;(2)詳見解析.
【解析】
(1)根據(jù)題設(shè)的數(shù)據(jù)可得列聯(lián)表,計(jì)算
的值后根據(jù)臨界值表可得相應(yīng)結(jié)論.
(2)利用二項(xiàng)分布可求
的分布列和數(shù)學(xué)期望.
(1)依題意可得列聯(lián)表
選擇物理 | 不選擇物理 | 合計(jì) | |
男 | 300 | 125 | 425 |
女 | 300 | 175 | 475 |
合計(jì) | 600 | 300 | 900 |
將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得
![]()
![]()
,
所以,不能在犯錯(cuò)誤概率不超過0.01的前提下認(rèn)為“選擇物理與學(xué)生的性別有關(guān)”.
(2)由(1)可知,從該校2018級(jí)高一學(xué)生中任取一名同學(xué),該同學(xué)選擇物理的概率
,
可取0,1,2,3.
,
,
,
.
的分布列為:
| 0 | 1 | 2 | 3 |
|
|
|
|
|
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)為2的正方體
中,點(diǎn)
是對(duì)角線
上的點(diǎn)(點(diǎn)
與
、
不重合),則下列結(jié)論正確的個(gè)數(shù)為( )
![]()
①存在點(diǎn)
,使得平面
平面
;
②存在點(diǎn)
,使得
平面
;
③若
的面積為
,則
;
④若
、
分別是
在平面
與平面
的正投影的面積,則存在點(diǎn)
,使得
.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若
討論
的單調(diào)性;
(2)當(dāng)
時(shí),若函數(shù)
與
的圖象有且僅有一個(gè)交點(diǎn)
,求
的值(其中
表示不超過
的最大整數(shù),如
.
參考數(shù)據(jù):![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
:
(
),直線
:
,
與
交于P、Q兩點(diǎn),
為P關(guān)于y軸的對(duì)稱點(diǎn),直線
與y軸交于點(diǎn)
;
(1)若點(diǎn)
是
的一個(gè)焦點(diǎn),求
的漸近線方程;
(2)若
,點(diǎn)P的坐標(biāo)為
,且
,求k的值;
(3)若
,求n關(guān)于b的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為正方形,
底面
,
,
為線段
的中點(diǎn),
為線段
上的動(dòng)點(diǎn).
![]()
(1)求證:平面
平面
.
(2)試確定點(diǎn)
的位置,使平面
與平面
所成的銳二面角為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
是函數(shù)的極值點(diǎn),求
的值及函數(shù)
的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:雙曲線
:
的左、右焦點(diǎn)分別為
,
,過
作直線
交
軸于點(diǎn)
.
![]()
(1)當(dāng)直線
平行于
的一條漸近線時(shí),求點(diǎn)
到直線
的距離;
(2)當(dāng)直線
的斜率為
時(shí),在
的右支上是否存在點(diǎn)
,滿足
?若存在,求出
點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若直線
與
交于不同兩點(diǎn)
、
,且
上存在一點(diǎn)
,滿足
(其中
為坐標(biāo)原點(diǎn)),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)使不等式
對(duì)任意
,
恒成立時(shí)最大的
記為
,求當(dāng)
時(shí),
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開汽車到離家最近的輕軌站,將車停放在輕軌站停車場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車場(chǎng)帶來很大的壓力.某輕軌站停車場(chǎng)為了解決這個(gè)問題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過4小時(shí)不超過6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過6小時(shí)不超過8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:
|
|
|
|
|
|
|
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長(zhǎng)與司機(jī)性別的
列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時(shí)”與性別有關(guān)?
(2)(i)
表示某輛車一天之內(nèi)(含一天)在該停車場(chǎng)停車一次所交費(fèi)用,求
的概率分布列及期望
;
(ii)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,
表示3輛車中停車費(fèi)用大于
的車輛數(shù),求
的概率.
參考公式:
,其中![]()
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com