【題目】《數(shù)書九章》是中國(guó)南宋時(shí)期杰出數(shù)學(xué)家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊
、
、
,求面積的公式,這與古希臘的海倫公式完全等價(jià),其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實(shí).一為從隅,開平方得積”若把以上這段文字寫出公式,即若
,則
.
(1)已知
的三邊
,
,
,且
,求證:
的面積
.
(2)若
,
,求
的面積
的最大值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)
、
,動(dòng)點(diǎn)
在
軸上的射影是
,且
.
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)設(shè)直線
、
的兩個(gè)斜率存在,分別記為
、
,若
,求點(diǎn)
的坐標(biāo);
(3)若經(jīng)過點(diǎn)
的直線
與動(dòng)點(diǎn)
的軌跡有兩個(gè)交點(diǎn)
、
,當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量
,滿足
且
,若對(duì)每一個(gè)確定的向量
,記
的最小值為
,則當(dāng)
變化時(shí),
的最大值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生人均課外學(xué)習(xí)時(shí)間是指單日內(nèi)學(xué)生不在教室內(nèi)的平均學(xué)習(xí)時(shí)間,這種課外學(xué)習(xí)時(shí)間對(duì)學(xué)生的學(xué)習(xí)有一定的影響.合肥市經(jīng)開區(qū)某著名高中學(xué)生群體
有走讀生和住校生兩種,調(diào)查顯示:當(dāng)群體
中
的學(xué)生為走讀生時(shí),走讀生的人均課外學(xué)習(xí)時(shí)間(單位分鐘)為
,而住校生的人均課外學(xué)習(xí)時(shí)間恒為40分鐘,試根據(jù)上述調(diào)查結(jié)果回答下列問題:
(1)當(dāng)
為何值時(shí),住校生的人均課外學(xué)習(xí)時(shí)間等于走讀生的課外人均學(xué)習(xí)時(shí)間?
(2)求該校高中學(xué)生群體
的人均課外學(xué)習(xí)時(shí)間
的表達(dá)式,并求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在
上的偶函數(shù)
和奇函數(shù)
,且
.
(1)求函數(shù)
,
的解析式;
(2)設(shè)函數(shù)
,記
(
,
).探究是否存在正整數(shù)
,使得對(duì)任意的
,不等式
恒成立?若存在,求出所有滿足條件的正整數(shù)
的值;若不存在,請(qǐng)說明理由.
參考結(jié)論:設(shè)
均為常數(shù),函數(shù)
的圖象關(guān)于點(diǎn)
對(duì)稱的充要條件是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中a,
.
(1)當(dāng)
,
時(shí),求函數(shù)
的零點(diǎn);
(2)當(dāng)
時(shí),解關(guān)于x的不等式
;
(3)如果函數(shù)
的圖象恒在直線
的上方,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,
(1)當(dāng)
時(shí),求
的最大值和最小值;
(2)求實(shí)數(shù)
的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點(diǎn)
(點(diǎn)
在點(diǎn)
的左側(cè)).過點(diǎn)
任作一條直線與圓
:
相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得
=
?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間
與乘客等候人數(shù)
之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這
組數(shù)據(jù)中選取
組數(shù)據(jù)求線性回歸方程,再用剩下的
組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù)
,再求
與實(shí)際等候人數(shù)
的差,若差值的絕對(duì)值都不超過
,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這
組數(shù)據(jù)中隨機(jī)選取2組數(shù)據(jù),求選取的這
組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;
(2)若選取的是后面
組數(shù)據(jù),求
關(guān)于
的線性回歸方程
,并判斷此方程是否是“恰當(dāng)回歸方程”;
附:對(duì)于一組數(shù)據(jù)
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:![]()
,
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com