分析 利用已知條件求出a,b,寫(xiě)出橢圓的標(biāo)準(zhǔn)方程即可.
解答 解:橢圓的標(biāo)準(zhǔn)方程對(duì)應(yīng)曲線經(jīng)過(guò)P(-4,0),Q(0,-2)兩點(diǎn),
可得a=4,b=2,
可得橢圓的標(biāo)準(zhǔn)方程是:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
故答案為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,考查計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?(x,y)∈P,y≤1-x2 | B. | ?(x,y)∈P,y≤($\frac{1}{2}$)x | ||
| C. | ?(x,y)∈P,y>2x | D. | ?(x,y)∈P,y≤log2(x+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | π2-1 | B. | π2+1 | C. | π | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com