【題目】如圖,在直角坐標(biāo)系
中,橢圓
的上焦點(diǎn)為
,橢圓
的離心率為
,且過點(diǎn)
.
![]()
(1)求橢圓
的方程.
(2)設(shè)過橢圓
的上頂點(diǎn)
的直線
與橢圓
交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線
的方程.
【答案】(1)
;(2)直線
的方程為
.
【解析】試題分析:(1)根據(jù)橢圓
的離心率為
,且過點(diǎn)
,結(jié)合性質(zhì)
,列出關(guān)于
、
、
的方程組,求出
、
、
,即可求得橢圓
的標(biāo)準(zhǔn)方程;(2)設(shè)直線
的方程為
,由
,求得
點(diǎn)坐標(biāo),求得
點(diǎn)坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算列方程求得
,即可求得直線
的方程.
試題解析:(1)因?yàn)闄E圓的離心率為
,所以![]()
即可得
,所以橢圓
的方程為
,
把點(diǎn)
代入
中,
解得![]()
所以橢圓方程為![]()
(2)設(shè)直線
的斜率為
,
則直線
的方程為![]()
由![]()
設(shè)由(1)知
,設(shè)
,
則有![]()
所以
所以![]()
因?yàn)?/span>
,所以
在線段
的中垂線上.
所以
,又
,
所以
,即
,
設(shè)
,又直線
垂直![]()
∴![]()
∴
,即![]()
又
∴
, ![]()
又
∴![]()
![]()
所以直線
的方程為
.
【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和數(shù)量積公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在
軸上,還是在
軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程
或
;③找關(guān)系:根據(jù)已知條件,建立關(guān)于
、
、
的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為平行四邊形,
,
是棱PD的中點(diǎn),且
,
.
(I)求證:
; (Ⅱ)求二面角
的大。
(Ⅲ)若
是
上一點(diǎn),且直線
與平面
成角的正弦值為
,求
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:min)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,
![]()
(1)求x的值并估計(jì)全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“書蟲”與性別有關(guān):
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年9月3日,抗戰(zhàn)勝利71周年紀(jì)念活動(dòng)在北京隆重舉行,受到全國人民的矚目.紀(jì)念活動(dòng)包括舉行紀(jì)念大會、閱兵式、擁待會和文藝晚會等,據(jù)統(tǒng)計(jì),抗戰(zhàn)老兵由于身體原因,參加紀(jì)念大會、閱兵式、招待會這個(gè)環(huán)節(jié)(可參加多個(gè),也可都不參加)的情況及其概率如下表所示:
![]()
(Ⅰ)若m=2n,則從這60名抗戰(zhàn)老兵中按照參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)分層抽取6人進(jìn)行座談,求從參加紀(jì)念活動(dòng)環(huán)節(jié)數(shù)為1的抗戰(zhàn)老兵中抽取的人數(shù);
(Ⅱ)某醫(yī)療部門決定從(Ⅰ)中抽取的6名抗戰(zhàn)老兵中隨機(jī)抽取2名進(jìn)行體檢,求這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
,直線
過定點(diǎn)
.
(Ⅰ)若
與圓
相切,求
的方程;
(Ⅱ)若
與圓
相交于
、
兩點(diǎn),求
的面積的最大值,并求此時(shí)直線
的方程.(其中點(diǎn)
是圓
的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓x2+
=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過F、B、C三點(diǎn)作圓P,其中圓心P的坐標(biāo)為(m,n).
(1)若FC是圓P的直徑,求橢圓的離心率;
(2)若圓P的圓心在直線x+y=0上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計(jì),某校學(xué)生上學(xué)路程所需要時(shí)間全部介于
與
之間(單位:分鐘).現(xiàn)從在校學(xué)生中隨機(jī)抽取
人,按上學(xué)所學(xué)時(shí)間分組如下:第
組
,第
組
,第
組
,第
組
,第
組
,得打如圖所示的頻率分布直方圖.
![]()
(Ⅰ)根據(jù)圖中數(shù)據(jù)求
的值.
(Ⅱ)若從第
,
,
組中用分成抽樣的方法抽取
人參與交通安全問卷調(diào)查,應(yīng)從這三組中各抽取幾人?
(Ⅲ)在(Ⅱ)的條件下,若從這
人中隨機(jī)抽取
人參加交通安全宣傳活動(dòng),求第
組至少有
人被抽中的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com