【題目】已知橢圓x2+
=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過(guò)F、B、C三點(diǎn)作圓P,其中圓心P的坐標(biāo)為(m,n).
(1)若FC是圓P的直徑,求橢圓的離心率;
(2)若圓P的圓心在直線x+y=0上,求橢圓的方程.
【答案】(1)
(2)
【解析】【試題分析】(1)根據(jù)橢圓的性質(zhì)得出
點(diǎn)的坐標(biāo),利用直徑所對(duì)圓周角是直角,即
.列方程解出
的值,由此求得離心率.(2)求得直線
和
垂直平分線的方程,求得
的值,代入直線方程可求得
,由此解得
的值并求出橢圓方程.
【試題解析】
(1)由橢圓的方程知a=1,
點(diǎn)B(0,b),C(1,0).設(shè)F的坐標(biāo)為(-c,0)(c>0),
∵FC是圓P的直徑,
∴FB⊥BC,
∵kBC=-b,kBF=
,
∴-b·
=-1,
∴b2=c=1-c2,c2+c-1=0,
解得c=
,∴橢圓的離心率e=
=
.
(2)∵圓P過(guò)F、B、C三點(diǎn),
∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,
FC的垂直平分線方程為x=
,①
∵BC的中點(diǎn)為
,kBC=-b,
∴BC的垂直平分線方程為y-
=![]()
,②
由①②得x=
,y=
,
即m=
,n=
.
∵P(m,n)在直線x+y=0上,
∴
+
=0(1+b)(b-c)=0.
∵1+b>0,
∴b=c.
由b2=1-c2得b2=
,
∴橢圓的方程為x2+
=1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若
=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系
中,橢圓
的上焦點(diǎn)為
,橢圓
的離心率為
,且過(guò)點(diǎn)
.
![]()
(1)求橢圓
的方程.
(2)設(shè)過(guò)橢圓
的上頂點(diǎn)
的直線
與橢圓
交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
是拋物線
上兩點(diǎn),且
與
兩點(diǎn)橫坐標(biāo)之和為3.
(1)求直線
的斜率;
(2)若直線
,直線
與拋物線相切于點(diǎn)
,且
,求
方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
、
為常數(shù)).若函數(shù)
與
的圖象在
處相切,
(Ⅰ)求
的解析式;
(Ⅱ)設(shè)函數(shù)
,若
在
上的最小值為
,求實(shí)數(shù)
的值;
(Ⅲ)設(shè)函數(shù)
,若
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,圓
,點(diǎn)
是圓上一動(dòng)點(diǎn),
的垂直平分線與
交于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,過(guò)點(diǎn)
且斜率不為0的直線
與
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,證明直線
過(guò)定點(diǎn),并求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某P2P平臺(tái)需要了解該平臺(tái)投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對(duì)區(qū)間[20,50]歲的人群隨機(jī)抽取20人進(jìn)行了一次理財(cái)習(xí)慣調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
![]()
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計(jì)表的第五與第六組的5人中,隨機(jī)選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題
:若關(guān)于
的方程
無(wú)實(shí)數(shù)根,則
;命題
:若關(guān)于
的方程
有兩個(gè)不相等的正實(shí)數(shù)根,則
.
(1)寫出命題
的否命題,并判斷命題
的真假;
(2)判斷命題“
且
”的真假,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com