【題目】已知橢圓
的左、右焦點(diǎn)分別為
,離心率為
,點(diǎn)
是橢圓上任意一點(diǎn),
的周長(zhǎng)為
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過(guò)點(diǎn)
(-4,0)任作一動(dòng)直線
交橢圓
于
兩點(diǎn),記
,若在線段
上取一點(diǎn)
,使得
,則當(dāng)直線
轉(zhuǎn)動(dòng)時(shí),點(diǎn)
在某一定直線上運(yùn)動(dòng),求該定直線的方程.
【答案】(Ⅰ)
;(Ⅱ) 點(diǎn)
在定直線
上.
【解析】試題分析: (1)由已知條件求出
的值, 根據(jù)
,求出橢圓的方程; (2)設(shè)直線
聯(lián)立直線與橢圓方程, 求出
的表達(dá)式,將
由
表示出來(lái),由
,求出
的表達(dá)式,化簡(jiǎn),求出為定值.
試題解析: (Ⅰ)因?yàn)?/span>
的周長(zhǎng)為
,
所以
,即
.
又離心率
,解得
,
.
所以橢圓
的方程為
.
(Ⅱ)由題意可知,直線
的斜率必存在.
故可設(shè)直線
的方程為
,
由
,消去
得
,
由根與系數(shù)的關(guān)系得
,
由
,得![]()
所以
.
所以
,
設(shè)點(diǎn)
的坐標(biāo)為
,
由
,得
,
所以
,
解得
.
而
,
,
所以
.
故點(diǎn)
在定直線
上.
點(diǎn)睛: 本題主要考查了以橢圓為載體,求橢圓標(biāo)準(zhǔn)方程以及橢圓與直線的關(guān)系 ,屬于中檔題. 考點(diǎn)有: 橢圓的標(biāo)準(zhǔn)方程,橢圓的簡(jiǎn)單幾何性質(zhì),韋達(dá)定理,向量坐標(biāo)運(yùn)算等等. 考查學(xué)生的邏輯思維能力,運(yùn)算求解能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)超市購(gòu)進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷(xiāo)售情況,該超市隨機(jī)調(diào)查了15位顧客(記為
)購(gòu)買(mǎi)這四種新產(chǎn)品的情況,記錄如下(單位:件):
顧 客 產(chǎn) 品 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷(xiāo)售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購(gòu)買(mǎi)兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的總金額為X,
求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷(xiāo)售業(yè)績(jī),應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)為選拔選手參加“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”,某中學(xué)舉行了一次“漢字聽(tīng)寫(xiě)大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為
)進(jìn)行統(tǒng)計(jì).按照
,
,
,
,
的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在
,
的數(shù)據(jù)).
![]()
(1)求樣本容量
和頻率分布直方圖中的
、
的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:![]()
的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,點(diǎn)
在
上
(Ⅰ)求
的方程;
(Ⅱ)直線
不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,
與
有兩個(gè)交點(diǎn)
,線段
的中點(diǎn)為
,證明:
的斜率與直線
的斜率的乘積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
過(guò)點(diǎn)
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的上頂點(diǎn)作直線
交拋物線
于
兩點(diǎn),
為原點(diǎn).
①求證:
;
②設(shè)
、
分別與橢圓相交于
、
兩點(diǎn),過(guò)原點(diǎn)
作直線
的垂線
,垂足為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若存在
使得
成立,求實(shí)數(shù)
的取值范圍;
(Ⅱ)求證:當(dāng)
時(shí),在(1)的條件下,
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
,離心率
,它的長(zhǎng)軸長(zhǎng)等于圓
的直徑.
(1)求橢圓
的方程;
(2)若過(guò)點(diǎn)
的直線
交橢圓
于
兩點(diǎn),是否存在定點(diǎn)
,使得以
為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn),若存在,求出定點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是
.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:
(
是參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線
的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),且
,試求實(shí)數(shù)m的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com