【題目】如圖,正方形
中,
分別是
的中點將
分別沿
折起,使
重合于點
.則下列結(jié)論正確的是( )
![]()
A. ![]()
B. 平面![]()
C. 二面角
的余弦值為![]()
D. 點
在平面
上的投影是
的外心
科目:高中數(shù)學 來源: 題型:
【題目】將3本相同的小說,2本相同的詩集全部分給4名同學,每名同學至少1本,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨公司1~6月份的銷售量
與利潤
的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x(萬件) | 10 | 11 | 13 | 12 | 8 | 6 |
利潤y(萬元) | 22 | 25 | 29 | 26 | 16 | 12 |
附:![]()
(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出
關(guān)于
的回歸直線方程![]()
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過
萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣
)∪(
,+∞)
B.(﹣
,﹣1)∪(1,
)
C.(﹣
,
)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
有如下性質(zhì):如果常數(shù)
,那么該函數(shù)在
上是減函數(shù),在
上是增函數(shù).
(1)已知
,
,
,利用上述性質(zhì),求函數(shù)
的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)
和函數(shù)
,若對于任意的
,總存在
,使得
成立,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE=
BC,PB⊥AE. ![]()
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的右焦點F(1,0),過F的直線l與橢圓C交于A,B兩點,當l垂直于x軸時,|AB|=3.
(1)求橢圓C的標準方程;
(2)在x軸上是否存在點T,使得
為定值?若存在,求出點T坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
市某機構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了
位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
不支持 | 支持 | 合計 | |
男性市民 |
| ||
女性市民 |
| ||
合計 |
|
|
(1)根據(jù)已知數(shù)據(jù)把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否有
的把握認為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有
位退休老人,其中
位是教師,現(xiàn)從這
位退體老人中隨機抽取
人,求至多有
位老師的概率.
參考公式:
,其中
.
參考數(shù)據(jù):
|
|
|
|
|
|
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com