分析 (1)由正弦定理結(jié)合R=1,化簡已知等式得到a2+b2-c2=ab,利用余弦定理算出cosC=$\frac{1}{2}$,從而可得C=60°.
(2)再利用基本不等式求出ab≤3,用正弦定理的面積公式即可算出△ABC的面積的最大值.
解答 解:(1)由正弦定理,可得b=2RsinB=2sinB,
代入已知等式得 2sin2A-2sin2C=2sinAsinB-2sin2B,
即sin2A+sin2B-sin2C=sinAsinB,
∴a2+b2-c2=ab,
由此可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
結(jié)合C∈(0°,180°),得C=60°.
(2)∵由(1)可得:ab=a2+b2-c2=a2+b2-(2RsinC)2=a2+b2-3≥2ab-3,
∴ab≤3 (當(dāng)且僅當(dāng)a=b時,取等號),
∵△ABC面積為S=$\frac{1}{2}$absinC≤$\frac{1}{2}$×3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$,
∴當(dāng)且僅當(dāng)a=b=$\sqrt{3}$時,△ABC的面積的最大值為$\frac{3\sqrt{3}}{4}$.
點評 本題給出三角形的邊角關(guān)系,求三角形面積的最大值,著重考查了正余弦定理、三角形的面積公式和基本不等式求最值等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $a>\sqrt{19}或a<-\sqrt{19}或-\sqrt{3}<a<\sqrt{3}$ | B. | $2<a<\frac{8}{3}$ | ||
| C. | $-1<a<\frac{8}{3}$ | D. | a∈∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{7}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com