【題目】已知函數(shù)![]()
(1)若函數(shù)
在點(diǎn)
處切線斜率為0,求
的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)若
在
處取得極大值,求
的取值范圍.
【答案】(1)3;(2)見解析;(3)![]()
【解析】
(1)f′(x)=1
,由題意可得:f′(3)=0,解得a.
(2)f′(x)=1
,(x>0).對(duì)a分類討論即可得出單調(diào)性.
(3)由f(x)在x=1處取得極大值,可得f′(1)=0.由(2)可得:a>1時(shí)滿足條件.
(1)f′(x)=1
,
由題意可得:f′(3)=1
0,解得a=3.
(2)f′(x)=1
,(x>0).
①當(dāng)a>1時(shí),可得:函數(shù)f(x)在(0,1)上單調(diào)遞增;在(1,a)上單調(diào)遞減;在(a,+∞)上單調(diào)遞增.
②當(dāng)a=1時(shí),可得:函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
③當(dāng)0<a<1時(shí),可得:函數(shù)f(x)在(0,a)上單調(diào)遞增;在(a,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
④當(dāng)a≤0時(shí),可得:函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
(3)∵f(x)在x=1處取得極大值,∴f′(1)=1+a﹣(a+1)=0.
由(2)可得:只有a>1時(shí)滿足條件,
∴a的取值范圍是(1,+∞).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位正方體
中,點(diǎn)P在線段
上運(yùn)動(dòng),給出以下四個(gè)命題:
![]()
異面直線
與
間的距離為定值;
三棱錐
的體積為定值;
異面直線
與直線
所成的角為定值;
二面角
的大小為定值.
其中真命題有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯(cuò)誤的是( )
A.圓錐所有的軸截面是全等的等腰三角形
B.圓柱的軸截面是過母線的截面中面積最大的一個(gè)
C.圓錐的軸截面是所有過頂點(diǎn)的界面中面積最大的一個(gè)
D.當(dāng)球心到平面的距離小于球面半徑時(shí),球面與平面的交線總是一個(gè)圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
上動(dòng)點(diǎn)
與定點(diǎn)
的距離和它到定直線
的距離的比是常數(shù)
,若過
的動(dòng)直線
與曲線
相交于
兩點(diǎn)
(1)說明曲線
的形狀,并寫出其標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)
不同的定點(diǎn)
,使得
恒成立?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會(huì)的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對(duì)2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對(duì)他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識(shí))進(jìn)行兩輪現(xiàn)場(chǎng)測(cè)試,并把兩輪測(cè)試成績的平均分作為該名學(xué)員的抽測(cè)成績.記錄的數(shù)據(jù)如下:
![]()
(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計(jì)這名學(xué)員抽測(cè)成績大于或等于90分的概率;
(2)根據(jù)規(guī)定,科目三和科目四測(cè)試成績均達(dá)到90分以上(含90)才算測(cè)試合格.
(i)從抽測(cè)的1號(hào)至5號(hào)學(xué)員中任取兩名學(xué)員,記
為學(xué)員測(cè)試合格的人數(shù),求
的分布列和數(shù)學(xué)期望
;
(ii) 記抽取的10名學(xué)員科目三和科目四測(cè)試成績的方差分別為
,
,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列
,對(duì)
,該數(shù)列前
項(xiàng)的最大值記為
,后
項(xiàng)
的最小值記為
,
.
(1)設(shè)數(shù)列
為3,4,7,5,2,寫出
,
,
,
的值;
(2)設(shè)
是
,公比
的等比數(shù)列,證明:
成等比數(shù)列;
(3)設(shè)
,證明:
的充分必要條件為
是公差為
的等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動(dòng)是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾賬號(hào),很多手機(jī)用戶加入微信運(yùn)動(dòng)后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運(yùn)動(dòng)的積極性明顯增強(qiáng).微信運(yùn)動(dòng)公眾號(hào)為了解用戶的一些情況,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取了100名用戶,統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:
|
|
|
|
|
|
|
|
| 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長方形的高;
(Ⅱ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬步的概率;
(Ⅲ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取2人,其中每日走路不超過0.8萬步的有
人,超過1.2萬步的有
人,設(shè)
,求的分布列及數(shù)學(xué)期望.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和
的直角坐標(biāo)方程;
(2)已知曲線
的極坐標(biāo)方程為
,
,
,點(diǎn)
是曲線
與
的交點(diǎn),點(diǎn)
是曲線
與
的交點(diǎn),且
,
均異于原點(diǎn)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:
,則( )
A.雙曲線C的離心率等于半焦距的長
B.雙曲線
與雙曲線C有相同的漸近線
C.雙曲線C的一條準(zhǔn)線被圓x2+y2=1截得的弦長為![]()
D.直線y=kx+b(k,b
R)與雙曲線C的公共點(diǎn)個(gè)數(shù)只可能為0,1,2
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com