【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
![]()
(1)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(2)求證:無(wú)論點(diǎn)E在BC邊的何處,都有
;
(3)當(dāng)
為何值時(shí),
與平面
所成角的大小為45°.
【答案】(1)EF//面PAC (2)見(jiàn)解析(3)![]()
【解析】
試題⑴當(dāng)E是BC中點(diǎn)時(shí),因F是PB的中點(diǎn),所以EF為
的中位線,
故EF//PC,又因
面PAC,
面PAC,所以EF//面PAC
⑵證明:因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,
又DA//CB,所以CB⊥面PAB,而
面PAB,所以
,
又在等腰三角形PAB中,中線AF⊥PB,PB
CB=B,所以AF⊥面PBC.
而PE
面PBC,所以無(wú)論點(diǎn)E在BC上何處,都有
⑶以A為原點(diǎn),分別以AD、AB、AP為x、y、z軸建立坐標(biāo)系,設(shè)
,
則
,
,
,設(shè)面PDE的法向量為
,
由
,得
,取
,又
,
則由
,得
,解得
.
故當(dāng)
時(shí),PA與面PDE成
角
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)g(x)=ax2+bx+c(a≠0)滿足g(x+1)=2x+g(x),且g(0)=1.
(1)求g(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式g(x)-t>2x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,以原點(diǎn)
為圓心,橢圓
的長(zhǎng)半軸為半徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,
為動(dòng)直線
與橢圓
的兩個(gè)交點(diǎn),問(wèn):在
軸上是否存在點(diǎn)
,使
為定值?若存在,試求出點(diǎn)
的坐標(biāo)和定值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若
,設(shè)
是函數(shù)
的兩個(gè)極值點(diǎn),若
,且
恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形
所在平面與等邊
所在平面互相垂直,
,
分別為
,
的中點(diǎn).
![]()
(1)求證:
平面
.
(2)試問(wèn):在線段
上是否存在一點(diǎn)
,使得平面
平面
?若存在,試指出點(diǎn)
的位置,并證明你的結(jié)論:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
,過(guò)點(diǎn)
的動(dòng)直線
交拋物線于
,
兩點(diǎn)
(1)當(dāng)
恰為
的中點(diǎn)時(shí),求直線
的方程;
(2)拋物線上是否存在一個(gè)定點(diǎn)
,使得以弦
為直徑的圓恒過(guò)點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
且
).
(1)若
的定義域?yàn)?/span>
,判斷
的單調(diào)性,并加以說(shuō)明;
(2)當(dāng)
時(shí),是否存在
,
,使得
在區(qū)間
上的值域?yàn)?/span>
,若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,恒有
成立,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)
有兩個(gè)極值點(diǎn)
,求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com