【題目】已知四棱錐
,底面
為菱形,
,
為
上的點,過
的平面分別交
,
于點
,
,且
平面
.
(1)證明:
;
(2)當(dāng)
為
的中點,
,
與平面
所成的角為
,求二面角
的余弦值.
![]()
【答案】(1)證明見解析;(2)
.
【解析】【試題分析】(1)連結(jié)
交
于點
,連結(jié)
.根據(jù)菱形有
,根據(jù)等腰三角形有
,所以以
平面
,
.利用線面平行的性質(zhì)定理有
,故
,所以
.(2)以
為坐標(biāo)原點建立空間直角坐標(biāo)系,通過計算平面
和平面
的法向量來計算二面角的余弦值.
【試題解析】
(1)證明:連結(jié)
交
于點
,連結(jié)
.因為
為菱形,所以
,且
為
、
的中點,因為
,所以
,
因為
且
平面
,所以
平面
,
因為
平面
,所以
.
因為
平面
,
平面
,且平面
平面
,
所以
,所以
.
(2)由(1)知
且
,因為
,且
為
的中點,
所以
,所以
平面
,所以
與平面
所成的角為
,
所以,所以
,因為
,所以
.
分別以
,
,
為
軸,建立如圖所示空間直角坐標(biāo)系,設(shè)
,則
,
所以
.
記平面
的法向量為
,則
,
令
,則
,所以
,
記平面
的法向量為
,則
,
令
,則
,所以
,
記二面角
的大小為
,則
.
所以二面角
的余弦值為
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.宿州市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了200位市民進行了解,發(fā)現(xiàn)支持開展的占
,在抽取的男性市民120人中持支持態(tài)度的為80人.
![]()
(Ⅰ)完成
列聯(lián)表,并判斷是否有
的把握認(rèn)為性別與支持與否有關(guān)?
(Ⅱ)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機選取2人進行座談,求選取的2人恰好為1男1女的概率.
附:
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
分別是橢圓
的左、右焦點,
是橢圓
上一點,且
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
兩點,且
,試求點
到直線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
是自然常數(shù).
(1)判斷函數(shù)
在
內(nèi)零點的個數(shù),并說明理由;
(2)
,
,使得不等式
成立,試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
![]()
(Ⅰ)求此人到達當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,
時,求函數(shù)
在
處的切線方程;
(2)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(3)在(1)的條件下,證明:
(其中
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱
中,底面
為等腰梯形,
.
![]()
(1)證明:
;
(2)設(shè)
是線段
上的動點,是否存在這樣的點
,使得二面角
的余弦值為
,如果存在,求出
的長;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且
,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得
?若存在,有幾個(不必求出Q點的坐標(biāo)),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作
的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】揚州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實習(xí),每名大學(xué)生都被隨機分配到兩所中學(xué)的其中一所.
(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實習(xí)的概率;
(2)設(shè)
,
分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記
,求隨機變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com