分析 (1)由面面垂直的性質(zhì)可證明結(jié)論;
(2)代入棱錐的體積公式計(jì)算可求出棱錐的體積;
(3)連結(jié)AC交BD于O,連結(jié)OE,則O是BD的中點(diǎn),顯然當(dāng)E為PC中點(diǎn)時(shí),有PA∥OE,從而PA∥平面BDE.
解答 證明:(1)∵∠PCD=90°,∴PC⊥CD,
∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,PC?平面PCD,![]()
∴PC⊥平面ABCD.
(2)V棱錐P-ABCD=$\frac{1}{3}$S正方形ABCD•PC=$\frac{1}{3}×{2}^{2}×1.5$=2.
(3)當(dāng)E為PC的中點(diǎn)時(shí),PA∥平面BDE.證明如下:
連結(jié)AC交BD于O,連結(jié)OE,
∵四邊形ABCD是正方形,∴O是AC的中點(diǎn),∵E是PC的中點(diǎn),
∴OE∥PA,∵PA?平面BDE,OE?平面BDE,
∴PA∥平面BDE.
點(diǎn)評(píng) 本題考查了線面垂直的判定,線面平行的判定,空間幾何體的體積計(jì)算,是基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,e) | B. | (0,$\frac{1}{e}$) | C. | (0,$\frac{1}{e}$),($\frac{1}{2}$,+∞) | D. | (0,$\frac{1}{2}$),(e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+4y+4=0 | B. | x-4y-4=0 | C. | x-4y+4=0 | D. | x+4y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{53}{3}$π | B. | $\frac{55}{3}$π | C. | 18π | D. | $\frac{76}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 1或16 | C. | $\frac{4}{3}$ | D. | 16 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com