| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | 1 |
分析 根據(jù)題意,由正弦定理變形可得sinC=$\frac{c•sinA}{a}$,結(jié)合題意可得sinA=$\frac{\sqrt{2}}{2}$,將a=$\sqrt{2}$,c=1代入sinC=$\frac{c•sinA}{a}$計(jì)算可得答案.
解答 解:在△ABC中,由正弦定理$\frac{a}{sinA}$=$\frac{c}{sinC}$可得sinC=$\frac{c•sinA}{a}$,
而a=$\sqrt{2}$,c=1,A=45°,即sinA=$\frac{\sqrt{2}}{2}$
則sinC=$\frac{c•sinA}{a}$=$\frac{1×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{1}{2}$,
故選:A.
點(diǎn)評(píng) 本題考查正弦定理的運(yùn)用,掌握并熟練運(yùn)用正弦定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 直線x-y=0上 | B. | 直線2x-y-1=0右下方的區(qū)域內(nèi) | ||
| C. | 直線x+y-8=0左下方的區(qū)域內(nèi) | D. | 直線x-y+2=0左上方的區(qū)域內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $6-\sqrt{2}$ | B. | $6+\sqrt{2}$ | C. | $5+\sqrt{2}$ | D. | $7+\sqrt{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com