【題目】已知函數(shù)
.
(1)求
在
處的切線方程;
(2)求證:
;
(3)求證:
有且僅有兩個(gè)零點(diǎn).
【答案】(1)
(2)見解析(3)見解析
【解析】
(1)求出
,即可求出切線的點(diǎn)斜式方程,整理可得切線方程為
;
(2)根據(jù)
圖像與切線
關(guān)系,先證
,再證
,通過構(gòu)造函數(shù)
,
,用導(dǎo)數(shù)法求出
即可;
(3)對
再求導(dǎo),可得
在
上單調(diào)遞增,再由零點(diǎn)存在性定理,可得存在唯一的
,使得
,進(jìn)而求出
的單調(diào)區(qū)間,再由
,即可證明結(jié)論.
(1)
,
,
,
故
在
處的切線方程為
;
(2)先證
.令
,
,設(shè)![]()
,故
在
上單調(diào)遞增,
因?yàn)?/span>
,故
在
上單調(diào)遞減,在
上單調(diào)遞增,
為
的極小值也是最小值,
故
,故
成立;
再證
.
令
,
,
令
得
,故
在
上單調(diào)遞減,
在
上單調(diào)遞增,
是
的極小值也是最小值,
故
,故
成立.
綜上知
成立.
(3)
,
設(shè)![]()
,
故
在
上單調(diào)遞增,
因
,
,
故根據(jù)函數(shù)零點(diǎn)存在性定理知存在唯一的
,使得
,
故
在
上單調(diào)遞減,在
上單調(diào)遞增.
因?yàn)?/span>
,故在
上存在一個(gè)零點(diǎn)0;且![]()
又因?yàn)?/span>
,
故存在唯一
使得
,
因此
有且僅有兩個(gè)零點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場所,現(xiàn)有一塊矩形
草坪如下圖所示,已知:
米,
米,擬在這塊草坪內(nèi)鋪設(shè)三條小路
、
和
,要求點(diǎn)
是
的中點(diǎn),點(diǎn)
在邊
上,點(diǎn)
在邊
時(shí)上,且
.
![]()
(1)設(shè)
,試求
的周長
關(guān)于
的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為
元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若關(guān)于x的方程f(x)=kx-
恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)我國優(yōu)秀傳統(tǒng)文化,某中學(xué)廣播站在中國傳統(tǒng)節(jié)日:春節(jié)、元宵節(jié)、清明節(jié)、端午節(jié)、中秋節(jié)這5個(gè)節(jié)日中隨機(jī)選取2個(gè)節(jié)日來講解其文化內(nèi)涵,則春節(jié)被選中的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎(jiǎng)促銷活動(dòng),顧客購買每滿
元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有
點(diǎn)數(shù)的正方體骰子
次,若擲得點(diǎn)數(shù)大于
,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有
個(gè)紅球與
個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷?/span>
個(gè)球,若
個(gè)球均為紅球,則獲得一等獎(jiǎng),若
個(gè)球?yàn)?/span>
個(gè)紅球和
個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).
若
,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;
若一等獎(jiǎng)可獲獎(jiǎng)金
元,二等獎(jiǎng)可獲獎(jiǎng)金
元,三等獎(jiǎng)可獲獎(jiǎng)金
元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為
,若商場希望
的數(shù)學(xué)期望不超過
元,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)
、
,直線
、
相交于點(diǎn)
,且它們的斜率之積為
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)已知定點(diǎn)
,
,過點(diǎn)
的直線
與曲線
交于
、
兩點(diǎn) ,則直線
與
斜率之積是否為定值,若是求出定值;若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)矩陣M=
(其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
+y2=1,求a,b的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com