分析 (1)先根據(jù)h的最大和最小值求得A和B,利用周期求得ω,當(dāng)t=0時(shí),h=0,進(jìn)而求得φ的值,則函數(shù)的表達(dá)式可得;
(2)令最大值為6,即h=4sin($\frac{2π}{15}$t-$\frac{π}{6}$)+2=6,可求得時(shí)間.
解答 解:(1)依題意可知h的最大值為6,最小為-2,
∴$\left\{\begin{array}{l}{A+B=6}\\{-A+B=-2}\end{array}\right.$,∴A=4,B=2;
∵水輪每秒鐘內(nèi)所轉(zhuǎn)過(guò)的角為$\frac{4×2π}{60}$=$\frac{2π}{15}$,得h=4sin($\frac{2π}{15}$t+φ)+2,
當(dāng)t=0時(shí),h=0,得sinφ=-$\frac{1}{2}$,即φ=-$\frac{π}{6}$,故所求的函數(shù)關(guān)系式為h=4sin($\frac{2π}{15}$t-$\frac{π}{6}$)+2
(2)令h=4sin($\frac{2π}{15}$t-$\frac{π}{6}$)+2=6,得sin($\frac{2π}{15}$t-$\frac{π}{6}$)=1,
取$\frac{2π}{15}$t-$\frac{π}{6}$=$\frac{π}{2}$,得t=5,
故點(diǎn)P第一次到達(dá)最高點(diǎn)大約需要5s.
點(diǎn)評(píng) 本題主要考查了在實(shí)際問(wèn)題中建立三角函數(shù)模型的問(wèn)題.考查了運(yùn)用三角函數(shù)的最值,周期等問(wèn)題確定函數(shù)的解析式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?x∈R,x2-x-2≤0 | B. | ?x∈R,x2-x-2<0 | C. | ?x∈R,x2-x-2≤0 | D. | ?x∈R,x2-x-2<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,$\frac{1}{2}$) | B. | (0,2) | C. | ($\frac{1}{2}$,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com