【題目】如圖,空間幾何體由兩部分構(gòu)成,上部是一個(gè)底面半徑為1,高為2的圓錐,下部是一個(gè)底面半徑為1,高為2的圓柱,圓錐和圓柱的軸在同一直線上,圓錐的下底面與圓柱的上底面重合,點(diǎn)
是圓錐的頂點(diǎn),
是圓柱下底面的一條直徑,
、
是圓柱的兩條母線,
是弧
的中點(diǎn).
![]()
(1)求異面直線
與
所成的角的大小;
(2)求點(diǎn)
到平面
的距離.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個(gè)月時(shí)污染度為
,整治后前四個(gè)月的污染度如下表:
月數(shù) |
|
|
|
| … |
污染度 |
|
|
|
| … |
污染度為
后,該工廠即停止整治,污染度又開(kāi)始上升,現(xiàn)用下列三個(gè)函數(shù)模擬從整治后第一個(gè)月開(kāi)始工廠的污染模式:
,
,
,其中
表示月數(shù),
、
、
分別表示污染度.
(1)問(wèn)選用哪個(gè)函數(shù)模擬比較合理,并說(shuō)明理由;
(2)若以比較合理的模擬函數(shù)預(yù)測(cè),整治后有多少個(gè)月的污染度不超過(guò)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
,
且
,
且
.
(1)若
,試判斷
的奇偶性;
(2)若
,
,
,證明
的圖像是軸對(duì)稱圖形,并求出對(duì)稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長(zhǎng)均為30千米(忽略內(nèi)、外環(huán)線長(zhǎng)度差異).
(1)當(dāng)9列列車(chē)同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長(zhǎng)候車(chē)時(shí)間為10分鐘,求內(nèi)環(huán)線列車(chē)的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車(chē)平均速度為25千米/小時(shí),外環(huán)線列車(chē)平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線共有18列列車(chē)全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長(zhǎng)候車(chē)時(shí)間之差不超過(guò)1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車(chē)運(yùn)行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
為兩非零有理數(shù)列(即對(duì)任意的
,
均為有理數(shù)),
為一無(wú)理數(shù)列(即對(duì)任意的
,
為無(wú)理數(shù)).
(1)已知
,并且
對(duì)任意的
恒成立,試求
的通項(xiàng)公式.
(2)若
為有理數(shù)列,試證明:對(duì)任意的
,
恒成立的充要條件為
.
(3)已知
,
,對(duì)任意的
,
恒成立,試計(jì)算
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為定義在實(shí)數(shù)集
上的函數(shù),把方程
稱為函數(shù)
的特征方程,特征方程的兩個(gè)實(shí)根
、
(
),稱為
的特征根.
(1)討論函數(shù)
的奇偶性,并說(shuō)明理由;
(2)已知
為給定實(shí)數(shù),求
的表達(dá)式;
(3)把函數(shù)
,
的最大值記作
,最小值記作
,研究函數(shù)
,
的單調(diào)性,令
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為
,中心角為
,甲由扇形中心
出發(fā)沿
以每秒2米的速度向
快走,同時(shí)乙從
出發(fā),沿扇形弧以每秒
米的速度向
慢跑,記
秒時(shí)甲、乙兩人所在位置分別為
,
,通過(guò)計(jì)算
,判斷下列說(shuō)法是否正確:
![]()
(1)當(dāng)
時(shí),函數(shù)
取最小值;
(2)函數(shù)
在區(qū)間
上是增函數(shù);
(3)若
最小,則
;
(4)
在
上至少有兩個(gè)零點(diǎn);
其中正確的判斷序號(hào)是______(把你認(rèn)為正確的判斷序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中無(wú)理數(shù)
.
(Ⅰ)若函數(shù)
有兩個(gè)極值點(diǎn),求
的取值范圍;
(Ⅱ)若函數(shù)
的極值點(diǎn)有三個(gè),最小的記為
,最大的記為
,若
的最大值為
,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com